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Let 
' = { }C C   be the extended complex plane and 

2 4= , : = = 1H x y x y
, where 

1
( ) =

2
x z

z



and 
1

( ) =
2( 1)

y z
z


 are the linear fractional transformations from 

' 'C C . Let m be a square-free 

positive integer. Then

2
*( ) = { : , 0, =   ( , , ) = 1}

a n a n
Q n a c b Z and a b c

c c

 
 

where 

2=n k m , is a proper subset of ( )Q m for all k N . For non-square =1
= 2

r kh i
ii

n p , it was 

proved in an earlier paper that the set 

' *( ) = { : ( ), = 1,2}Q n Q n t
t

  
is an H -set for all 0h 

whereas if = 0h or 1 then 

** *) = { : ( ), 2 | }
a n a n

Q n Q n c
c c

 


and 

 * * ** **( 4 ) = ( ) \ ( ) ( 4 )Q n Q n Q n Q n:

are disjoint H -subsets of 
' ** *( ) = ( ) ( 4 )Q n Q n Q n  :

. In this paper, we prove that if 2h  , then 
' * *( ) = ( ) ( 4 )Q n Q n Q n : :

and also determine the proper H -subsets of 
* ( 4 )Q n:

. In 

particular, 
' 2( ) \ = ( )Q m Q Q k m for all k N . AMS Mathematics subject classification 

(2000): 05C25, 11E04, 20G15

Keywords: Real quadratic fields, orbits, linear fractional transformations. 

INTRODUCTION

Throughout the paper we take m as a square 

free positive integer. Since every element of ( ) \Q m Q

can be expressed uniquely as 

a n

c



, where 
2=n k m , 

k is any positive integer and 

2

, =
a n

a b
c



and c are 

relatively prime integers and we denote it by ( , , )a b c . 
Then 

2
*( ) = { : , , =   ( , , ) = 1},

a n a n
Q n a c b Z and a b c

c c

 


' *( ) = { : ( ), = 1,2},Q n Q n t
t

  

** *) = { : ( )  2 | }
a n a n

Q n Q n and c
c c

 


are subsets of the real quadratic field ( )Q m and 

( ) \Q m Q is the disjoint union of 
*( )Q n for all n . 

If 
*( , , ) ( )a b c Q n  and its conjugate  have 

opposite signs then  is called an ambiguous number 

(Mushtaq, 1988). A non-empty set  with an action of a 

group G on it, is said to be a G -set. We say that  is 

a transitive G -set if, for any ,p q in  there exists a 

g in G such that =gp q .
We are interested in linear-fractional 

transformations x , y satisfying the relations 
2 = = 1rx y , with a view to study an action of the group 

,x y  on real quadratic fields. If 
:

az b
y z

cz d




 is to 
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act on all real quadratic fields then , , ,a b c d must be 
rational numbers, and can be taken to be integers. Thus 

2( )a b

ad bc


 is rational. But if 

az b
z

cz d




 is of order of r , 

one must have 

2
1( )

= 2
a b

ad bc
 
 

 , where  is a 

primitive r -th root of unity. Now 
1  is rational 

for a primitive r -th root only if = 1,2,3, 4  6r or , so 

that these are the only possible orders of y . The group 
2, : = = 1rx y x y  is cyclic of order 2 or 

D ( an 

infinite dihedral group ) according as = 1  2r or . For 

= 3r , the group ,x y  is the modular group 
(2, )PSL Z . The fractional linear transformations ,x y

with 

1
( ) =

2
x z

z



and 

1
( ) =

2( 1)
y z

z


 generate a subgroup 

H of the modular group which is isomorphic to the 

abstract group 
2 4, : = = 1x y x y  . It is a standard 

example from the theory of the modular group. The 

action of H on the rational projective line { }Q  is 

transitive (see Mushtaq et al ., 1997).

In our case, the set ( ) \Q m Q is an H -set. It 

is noted that H is the free product of 
2

2 = : = 1C x x 

and 
4

4 = : = 1C x y 
. The action of the modular group 

(2, )PSL Z on the real quadratic fields has been 
discussed in detail in (Mushtaq, 1988) and (M. Aslam 

Malik et al ., 2005). The actual number of ambiguous 

numbers in 
*( )Q n has been discussed in (S. M. 

Husnine et al ., 2005) as a function of n .
In a recent paper M. Aslam Malik and M. Asim 

Zafar, 2011, have investigated that the cardinality of the 

set pE
, p a prime factor of n , consisting of all classes 

[ , , ](  )a b c mod p of the elements of 
*( )Q n is 

3 1p  and obtained two proper G -subsets of 
*( )Q n

corresponding to each odd prime divisor of n . M. Aslam 
Malik and M. Asim Zafar, 2011 have determined the 

cardinality of the set 
rp

E
, 1r  , consisting of all 

classes [ , , ](  )ra b c mod p of the elements of 
*( )Q n

and have determined, for each non-square n , the G -

subsets of an invariant subset 
*( )Q n of ( ) \Q m Q

under the modular group action by using classes 
[ , , ](  )a b c mod n .

In this paper we examine the action of the group 

H on subsets 
' ( )Q n

of ( ) \Q m Q . An action of 

H and its proper subgroup on ( )Q m has been 

discussed in (Mushtaq et al ., 1993, 1997, 2007). M. 

Aslam Malik et al ., 2005, examined some properties of 

real quadratic irrational numbers under the action of H

and found some H -subsets of ( )Q m . In Lemma 1.1 

of (M. Aslam Malik et al ., 2005) such properties were 

discussed for 1,2  3(  4)n and mod and prove that 
' ( )Q n

is the disjoint union of 
**( )Q n and 

 * * ** **( 4 ) = ( ) \ ( ) ( 4 )Q n Q n Q n Q n:

In this paper we extend this result to all non-

square 0(  4)n mod and show that 
' ( )Q n

is the 

disjoint union of H -subsets 
* ( )Q n:

and 
* ( 4 )Q n:

. This reveals that ( ) \Q m Q is the union 

of 
' 2( )Q k m

k N  . However if n and n are 
two distinct non-square positive integers then 

* *( ) ( ) =Q n Q n  whereas 
' '( ) ( )Q n Q n  

may not be empty. In particular 
' ' *( ) ( 4 ) = ( )Q n Q n Q n  :

for each non-square 
positive integer n . In fact we prove that a superset 
namely 

** * **2 4
( 4 ) { : = ( 4 ) \ ( 4 )}

2

a n
Q n Q n Q n

c

  
 

of 
**( 4 )Q n , is an H -subset of ( ) \Q m Q . We 

have also found H -subsets of 
* ( 4 )Q n:

such that 
these may are may not be transitive however they will 

help in determining the transitive H -subsets ( H -orbits) 

of ( ) \Q m Q .
The notation is standard and we follow (M. 

Aslam Malik et al . 2005, 37(2005)), (M. Aslam Malik 
and M. Asim Zafar, 2011) and (M. Aslam Malik and M. 

Asim Zafar, 2011 submitted). In particular ( / )  denotes 

the Legendre symbol and 

1
( ) = { : }

2
x Y Y
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for each subset Y of ( ) \Q m Q . 

Preliminaries:

Let 
=

a n

c
 

with 

2

=
a n

b
c



. We tabulate the 

actions on ( , , )a b c of ,x y and their combinations 
2 , ,y xy yx and 

2y x in the following table for later 
reference. 

Table 1: The action of elements of H on 
' ( )Q n 

 a b c

( )x  a

2

c 2b

( )y  a c 

2

c 2(2 )a b c 

2 ( )y  3 2a b c   2a b c  4 4a b c 

( )xy  a c 2a b c  c

( )yx  2a b b 4 4a b c  

2 ( )y x  3 2a b c  4 4

2

a b c   2( 2 )a b c  

We list the following results from (M. Aslam 

Malik et al . 2005, 37(2005)), (M. Aslam Malik and M. 
Asim Zafar, 2011) and (M. Aslam Malik and M. Asim 
Zafar, 2011 submitted) for later reference.

Lemma 2.1: (M. Aslam Malik et al ., 2005) Let 
*( , , ) ( )a b c Q n  . Then:

1. If 0(  4)n mod then 

**( )
2

Q n



if and only if 
2 | b .

2. 

** ( 4 )
2

Q n



if and only if 2 bŒ .

Theorem 2.2 (M. Aslam Malik et al ., 2005) The set 

' *( ) = { : ( ), = 1, 2}Q n Q n t
t

  
, is invariant 

under the action of H .

Theorem 2.3 (M. Aslam Malik et al ., 2005) For each 

non square positive integer 1,2  3(  4)n or mod , 
** *) = { ( , , ) : ( )  2 | }Q n a b c Q n and c   is an 

H -subset of 
' ( )Q n

.

It is well known that 
2 3= , : = = 1G x y x y 

represents the modular group, where 
1 1

( ) = , ( ) =
z

x z y z
z z

 

are linear fractional 
transformations.

Theorem 2.4 (M. Aslam Malik et al ., 2005 PUJM) If 
0  3(  4)n or mod , then 

*= { ( ) :   1(  4)}S Q n b or c mod   and 
*= { ( ) :   1(  4)}S Q n b or c mod    are 

exactly two disjoint G -subsets of 
*( )Q n depending 

upon classes [ , , ]a b c modulo 4 .

Corollary 2.5 (M. Aslam Malik et al ., 2005 PUJM) If 
1  2(  4)n or mod , then S and S , as defined in 

Theorem 2.4, are not disjoint.    W

Theorem 2.6 (M. Aslam Malik and M. Asim Zafar, 

2011) Let p be an odd prime factor of n . Then both of 
*

1 = { ( ) : ( / )  ( / ) = 1 }pS Q n b p or c p 
and 

*
2 = { ( ) : ( / )  ( / ) = 1}pS Q n b p or c p  

are G -subsets of 
*( )Q n . In particular,these are the 

only G -subsets of 
*( )Q n depending upon classes 

[ , , ]a b c modulo p .
Theorem 2.7 (M. Aslam Malik and M. Asim Zafar, 2011 

submitted) Let 1p
and 2p

be distinct odd primes factors 

of n . Then 
1 2

1,1 1 1=
p p

S S S
, 

1 2
1,2 1 2=

p p
S S S

, 
1 2

2,1 2 1=
p p

S S S
and 

1 2
2,2 2 2=

p p
S S S

are four G -

subsets of 
*( )Q n . More precisely these are the only 
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four G -subsets of 
*( )Q n depending upon classes 

[ , , ]a b c modulo 1 2p p
.

Notation: The four G -subsets defined in Theorem 2.7 

can be briefly written as 
1 , 21 2i iS  

. More generally if n

involves r distinct odd prime factors 1 2, ,..., rp p p
, 

then 
*( )Q n is the disjoint union of 2r

subsets 

1 , , ,..., 21 2 3i i i ir
S  

which are invariant under the action of 
G .
The following theorem extends Theorem 2.7 for all non-
square positive integers n .
Theorem 2.8 (M. Aslam Malik and M. Asim Zafar, 2011 

submitted) Let 
1 2

1 2= 2
k k kk r

rn p p p 
where 

1 2, ,..., rp p p
are distinct odd primes such that n is not 

equal to a single prime congruent to 1 modulo 8 . Then 

the number of G -subsets of 
*( )Q n is 2r

namely 

1 , , ,..., 21 2 3i i i ir
S  

if = 0  1k or . Moreover if 2k  , then 

each G -subset X of these G -subsets further splits into 

two proper G -subsets { :   1(  4)}X b or c mod  

and { :   1(  4)}X b or c mod    . Thus the number 

of G -subsets of
*( )Q n is 

12r
if 2k  . More 

precisely these are the only G -subsets of 
*( )Q n

depending upon classes [ , , ]a b c modulo n .

3 Action of 
2 4= , : = = 1H x y x y  on 

* ( 4 )Q n:

In this section we establish that if n contains r distinct 

prime factors then 
* ( 4 )Q n:

is the disjoint union of 

2r
subsets which are invariant under the action of H . 

However these H invariant subsets may further split 

into transitive H -subsets ( H -orbits) of 
* ( 4 )Q n:

, 

for example 
* ( 4 37)Q :

splits into six orbits namely 

( 37)H

, ( 37)H , 

1 37
( )

3
H

, 

1 37
( )

3
H

 , 

1 37
( )

3
H 

and 

1 37
( )

3
H 

 . All these orbits are 

contained in 1 1( )p pA x A
.

Lemma 3.1 Let 1,2  3(  4)n or mod . Let Y be any 

G -subset of 
* ( 4 )Q n:

. Then ( )Y x Y is an H -

subset of 
* ( 4 )Q n:

.
Proof: By Theorem 2.3, we know that 

' **( ) \ ( )Q n Q n

is an H -set. For any 
* ( 4 )Q n  :

, proof follows from the equations 
1

( ) =
2

x 



, 

1
( ) =
2

x 



, 

1 1
( ) = =

2( 1) 2
y 

 
 

 , 

where = 1   and 

1 1
( ) =
2 2

y
 
 

, where 
1

= 1
2






. Since every element of the group 

2 4= , : = = 1H x y x y
is a word in the generators 

,x y of the group H and the transformations 
1   , 1   belong to both of the groups 

G and H . W

Theorem 3.2 Let 1,2  3(  4)n or mod be divisible by 

an odd prime p . Let 
**

1 1= \ ( )p pA S Q n
and 

**
2 2= \ ( )p pA S Q n

. Then both 1 1( )p pA x A
and 

2 2( )p pA x A
are H -subsets of 

* ( 4 )Q n:

. 

Consequently the action of H on 
* ( 4 )Q n:

is 
intransitive.

Proof: follows from Theorem 2.6 and Lemma 3.1.    W
Now we extend Theorem 3.2 for each non-square n . 

Theorem 3.3 Let 
1 2

1 2= 2
k k kk r

rn p p p 
, where 

1 2, ,..., rp p p
are distinct odd primes and = 0  1k or . 

Let 

**
1 , , ,..., 2 1 , , ,..., 21 2 3 1 2 3

= \ ( )i i i i i i i ir r
A S Q n   

. Then 
* ( 4 )Q n:

is the disjoint union of 2r
subsets 

1 , , ,..., 2 1 , , ,..., 21 2 3 1 2 3
( )i i i i i i i ir r

A x A   
which are invariant 

under the action of H . More precisely these are the only 

H -subsets of 
* ( 4 )Q n:

depending upon classes 
[ , , ]a b c modulo n . 
Proof: Proof follows from Theorem 2.8 and Lemma 3.1. 
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W

Theorem 3.4 Let 
1 2

1 2= 2
k k kk r

rn p p p 
, where 

1 2, ,..., rp p p
are distinct odd primes and 2k  . If S

is any of the G -subsets given in Theorem 2.8 and 
**= \ ( )A S Q n , then ( )A x A is an H -subset of 

* ( 4 )Q n:

. More precisely these are the only H -

subsets of 
* ( 4 )Q n:

depending upon classes [ , , ]a b c

modulo n .
Proof: follows directly from Theorem 2.8 and Lemma 

3.1.    W

If 0  3(  4)n or mod , then by Theorem 2.4, S and 

S are G -subsets of 
*( )Q n and hence by Lemma 

3.1, ( )S x S and ( )S x S   are distinct H -

subsets of 
' ( )Q n

. Whereas if 1  2(  4)n or mod , 

then by Corollary 2.5, we know that S and S are not 

G -subsets of 
*( )Q n . However the following lemma 

shows that ( )S x S and ( )S x S   are distinct 

H -subsets of 
' ( )Q n

.

Lemma 3.5 Let 
**= \ ( )X Y Q n , where Y is any of 

the G -subsets of 
*( )Q n and 1  2(  4)n or mod . 

Let = { :   1(  4)}S X b or c mod   and 
= { :   1(  4)}S X b or c mod    . Then 

( )S x S and ( )S x S   are both disjoint H -

subsets of ( )X x X . Consequently the action of H

on ( )X x X is intransitive.

Proof: As each g H is a word in ,x y and 
2y . Also 

we know that 
1 =x x

, 
1 3=y y

, 
2 1 2( ) =y y

, 
1 3( ) =xy y x

, 
1 3( ) =yx xy

and 
2 1 2( ) =y x xy

. 

Thus if S  , then it follows by Table, 
2 ( )y  , 

( )xy  and ( )yx  belong to S and hence 
3 ( )y x 

and 
3 ( )xy S  . However ( )x  , ( )y  and 

2 ( )y x 

does not belong to S and hence 
3( )y  and 

2 ( )xy 

does not belong to S . Thus by Lemma 2.1 and Table 

given before Lemma 2.1, ( )S x S is an H -subset of 

( )X x X . Similarly, ( )S x S   is an H -subset 

of ( )X x X .

If 
1 2

1 2= 2
k k kk r

rn p p p 
, where 1 2, ,..., rp p p

are 

distinct odd primes and = 0  1k or then, by Theorem 

2.3, 
**( )Q n is an H -subset of 

' ( )Q n

. But if 

2k  , then it is easy to see that 
**( )Q n is not an 

H -subset of 
' ( )Q n

. However, we prove that a 

superset of 
**( )Q n is an H -subset of 

' ( )Q n

. For 
this, we need to establish the following results!

Lemma 3.6 Let 
1 2

1 2= 2
k k kk r

rn p p p 
, where 

1 2, ,..., rp p p
are distinct odd primes and = 0  1k or . 

Then

1. 
** ' *( 4 ) = ( ) \ ( )Q n Q n Q n

and
2. 

* ** * **2 4
( ) \ ( ) ={ : = ( 4 ) \ ( 4 )}

2

a n
Q n Q n Q n Q n

c

  


Proof: 1. Let 

* *4 4
( 4 ) = { ( 4 )  2 | }

a n a n
Q n Q n and c

c c

 
 

. Then 

2 4a n

c



and 2

c

are both integers and 
2 4

( , , ) = 1
a n

a c
c



. As c and 4n are both even, so a

must be even. Let = 2 , = 2a a c c 
. Then 

2 24
= 2( )

a n a n

c c

 
 must be odd as otherwise 

2 4
( , , )

a n
a c

c




1. So = 2c c  . This shows that 
2( )a n

c

 
 is an integer, while 

2( )a n

c

 
 is not an 

integer for otherwise 

2 4a n

c



is not odd, a 
contradiction. Also 

2 24 ( )
( , , ) = 1 ( , , ) = 1

a n a n
a c a c

c c

  
 . Therefore 
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4
= =

a n a n a n

c c c

   
  belongs to 

*( )Q n . 

Thus 

4a n

c



belongs to 
' *( ) \ ( )Q n Q n

. 

Conversely let 

' *( ) \ ( )
2

a n
Q n Q n

c



. Then, by 

Lemma 2.1, 

* ( )
2

a n
Q n

c




such that 

2a n

c



is 

odd and hence 

2 4
=

2 4

a n a n

c c

 

belongs to 

*( 4 )Q n . Obviously 2

a n

c



belongs to 
**( 4 )Q n . This completes the first part of Lemma 3.6.

2. We now prove that 

* ** * **2 4
{ : = ( 4 ) \ ( 4 )} = ( ) \ ( )

2

a n
Q n Q n Q n Q n

c

  


. For this, let 

* **2 4
( ) \ ( )

a n
Q n Q n

c




. Then 
24 4a n

c



is an integer and 
2 24 4

(2 , , ) = 1 ( , , ) = 1
a n a n

a c a c
c c

 


. This implies that 

* **2 4
= ( ) \ ( )

2

a n a n
Q n Q n

c c

 


. 
Conversely, suppose that 

* **( ) \ ( )
a n

Q n Q n
c




. Then clearly c is odd 

and 

2

( , , ) = 1
a n

a c
c



. Also 
2 24 4

( , , ) = 1 (2 , , ) = 1
a n a n

a c a c
c c

 


. Thus 

2 4 1 2 4
= = ( )

2 2

a n a n a n

c c c

  

, where 

* **2 4
( ) \ ( 4 )

a n
Q n Q n

c




. This completes 

the proof. W

The following lemma is an extension of Lemma 3.6 for 

all 0(  4)n mod and its proof is analogous to the 
proof of above lemma.

Lemma 3.7 Let 0(  4)n mod . Then
1. 

* ** ** ' *( ) \ ( ) ( 4 ) = ( ) \ ( )
4 4

n n
Q Q Q n Q n Q n 

  
 
and 
2. 

* ** * **2 4
( ) \ ( ) ={ : = ( 4 ) \ ( 4 )}

2

a n
Q n Q n Q n Q n

c

  


Theorem3.8 Let 1,2  3(  4)n or mod . Then 

** * **2 4
( 4 ) { : = ( 4 ) \ ( 4 )}

2

a n
Q n Q n Q n

c

  
 

is an H -subset of 
' ( )Q n

.
Proof: By Lemma 3.6, 

* * ' *( 4 ) = ( ) \ ( )Q n Q n Q n

and 

* ** * **2 4
{ : = ( 4 ) \ ( 4 )}= ( ) \ ( )

2

a n
Q n Q n Q n Q n

c

  


. Thus

' ** ** * **2 4
( )\ ( )= ( 4 ) { : = ( 4 )\ ( 4 )}

2

a n
Q n Q n Q n Q n Q n

c

  
 

is an H -subset of 
' ( )Q n

if and only if 

0(  4)n mod . Also since 
*( )Q n is not H -subset 

so 
* **( ) \ ( )Q n Q n and 

' *( ) \ ( )Q n Q n

are 

not H -subsets of 
' ( )Q n

. By Theorems 2.2, 2.3 we 

know that 
' *( ) \ ( )Q n Q n

is an H -subset of 

' ( )Q n

. Thus 

** * **2 4
( 4 ) { : = ( 4 )\ ( 4 )}

2

a n
Q n Q n Q n

c

  
 

is an H -subset of 
' ( )Q n

.    W
The following remark is an immediate consequence of 
Lemma 3.6 and Theorem 3.8.

Remark 3.9 Let 0(  4)n mod . Then 
' ** *( ) = ( ) ( 4 )Q n Q n Q n  :

, where 

 * * ** **( 4 ) = ( ) \ ( ) ( 4 )Q n Q n Q n Q n:

.
The following theorem is an extension of Theorem 3.8 

for all 0(  4)n mod whose proof is analogous to the 
proof of above Theorem.
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Theorem 3.10 Let 0(  4)n mod . Then

** * **2 4
( 4 ) { : = ( 4 ) \ ( 4 )}

2

a n
Q n Q n Q n

c

  
 

is an H -subset of 
' ( )Q n

.    W

Theorem 3.11 Let 0(  4)n mod and 
*( , , ) ( )a b c Q n  . Then:

1. If a is odd then 2



belongs to 
**( 4 )Q n .

2. If a is even then 2



belongs to 

* **( ) \ ( )
4 4

n n
Q Q

or 
**( 4 )Q n according as 

* **( ) \ ( )Q n Q n  or 
**( )Q n  .

Proof: Let 0(  4)n mod . Let 

*= ( )
a n

Q n
c

 


. Then we have the following

1. If a is odd then 
2( )a n is odd. So b cannot be 

even. Therefore, by second part of Lemma 2.1, 2



belongs to 
**( 4 )Q n .

2. If a is even then 
2( ) 0(  4)a n mod  . So ,b c

cannot be both even, as otherwise ( , , ) 1a b c  . Thus 

exactly one of ,b c is even. Therefore, again by second 

part of Lemma 2.1, if b is odd then 2



belongs to 
**( 4 )Q n . If b is even then, from the proof of Lemma 

3.6(2), 2



belongs to 

* **( ) \ ( )
4 4

n n
Q Q

. That is, 

2



belongs to 

* **( ) \ ( )
4 4

n n
Q Q

or 
**( 4 )Q n

according as 
* **( ) \ ( )Q n Q n  or 

**( )Q n  .    W
The following example illustrates the above theorem.

Example 3.12 Let = 8n . Then 

*1 8
= ( 8)

1
Q 


but 

**1 8 2 32
= = ( 32)

2 2 4
Q

  


. 

Also 
*2 8

= ( 8)
1

Q 


but 
* **1 2

= ( 2) \ ( 2)
2 1

Q Q
 


. 

Similarly 
**2 8

= ( 8 )
4

Q 


whereas 
**4 32

= ( 32)
2 16

Q
 


.

By summarizing the above results we have the following

Theorem 3.13 Let 0 (  4 )n m od . Then 
' * *( ) = ( ) ( 4 )Q n Q n Q n : :

, where 

 * * ** **( 4 ) = ( ) \ ( ) ( 4 )Q n Q n Q n Q n:

and 

* * ** **( ) = ( ( ) \ ( )) ( )
4 4

n n
Q n Q Q Q n:

.

Proof: Follows from Lemma 3.7 and Theorem 3.10.  W
We conclude this paper with the following examples for 

illustration of Remark 3.9 and Theorem 3.13. For = 2n ,

4 = 8n , 
* ( 8) = ( 2) ( 2)H HQ  :

, 
* ( 32) = ( 8) ( 8)H HQ  :

. So 
' ( 8)Q 

has 

exactly 4 orbits under the action of H . Also if = 3n , 

4 = 12n , 
* ( 12) = ( 3) ( 3)H HQ  :

, 
* ( 48) = ( 12) ( 12)H HQ  :

. So 
' ( 12)Q 

has exactly 4 orbits under the action of H . Similarly if 

= 5n , 4 = 20n , 
* ( 20) = ( 5) ( 5)H HQ  :

, 
* ( 80) = ( 20) ( 20)H HQ  :

. So 
' ( 20)Q 

has exactly 4 orbits under the action of H . 
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