CERTAIN H-SUBSETS OF $Q(\sqrt{m}) \backslash Q$ UNDER THE ACTION OF

$$
H=\left\langle x, y: x^{2}=y^{4}=1\right\rangle
$$

M. Aslam Malik, S. M Husnine and M. Asim Zafar

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan. Corresponding Author E-mail: malikpu@yahoo.com

Let $C^{\prime}=C \cup\{\infty\}$ be the extended complex plane and $H=\left\langle x, y: x^{2}=y^{4}=1\right\rangle$, where $x(z)=\frac{-1}{2 z}$ and $y(z)=\frac{-1}{2(z+1)}$ are the linear fractional transformations from $C^{\prime} \rightarrow C^{\prime}$. Let m be a square-free positive integer. Then $Q^{*}(\sqrt{n})=\left\{\frac{a+\sqrt{n}}{c}: a, c \neq 0, b=\frac{a^{2}-n}{c} \in Z\right.$ and $\left.(a, b, c)=1\right\}$
where $n=k^{2} m$, is a proper subset of $Q(\sqrt{m})$ for all $k \in N$. For non-square $n=2^{h} \prod_{i=1}^{r} p_{i}^{k_{i}}$, it was proved in an earlier paper that the set $Q^{\prime \prime}(\sqrt{n})=\left\{\frac{\alpha}{t}: \alpha \in Q^{*}(\sqrt{n}), t=1,2\right\}$ is an $H_{\text {-set for all }} h \geq 0$ whereas if $h=0 \quad$ or 1 then $\left.Q^{* *} \sqrt{n}\right)=\left\{\frac{a+\sqrt{n}}{c}: \frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n}), 2 \mid c\right\}$ and $Q^{* *}(\sqrt{4 n})=\left(Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})\right) \cup Q^{* *}(\sqrt{4 n})$ are disjoint $\quad H_{\text {-subsets }}$ of $Q^{\prime \prime}(\sqrt{n})=Q^{* *}(\sqrt{n}) \cup Q^{*:}(\sqrt{4 n})$. In this paper, we prove that if $h \geq 2$, then $Q^{\prime \prime}(\sqrt{n})=Q^{*:}(\sqrt{n}) \cup Q^{*:}(\sqrt{4 n})$ and also determine the proper $H_{\text {-subsets of }} Q^{*:}(\sqrt{4 n})$. In particular, $Q(\sqrt{m}) \backslash Q=\cup Q^{\prime \prime}\left(\sqrt{k^{2} m}\right)$ for all $k \in N$. AMS Mathematics subject classification (2000): 05C25, 11E04, 20G15

Keywords: Real quadratic fields, orbits, linear fractional transformations.

INTRODUCTION

Throughout the paper we take m as a square free positive integer. Since every element of $Q(\sqrt{m}) \backslash Q$ can be expressed uniquely as $\frac{a+\sqrt{n}}{c}$, where $n=k^{2} m$, k is any positive integer and $a, b=\frac{a^{2}-n}{c}$ and c are relatively prime integers and we denote it by $\alpha(a, b, c)$. Then
$Q^{*}(\sqrt{n})=\left\{\frac{a+\sqrt{n}}{c}: a, c, b=\frac{a^{2}-n}{c} \in Z\right.$ and $\left.(a, b, c)=1\right\}$,
$Q^{\prime \prime}(\sqrt{n})=\left\{\frac{\alpha}{t}: \alpha \in Q^{*}(\sqrt{n}), t=1,2\right\}$,
$\left.Q^{* *} \sqrt{n}\right)=\left\{\frac{a+\sqrt{n}}{c}: \frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})\right.$ and $\left.2 \mid c\right\}$
are subsets of the real quadratic field $Q(\sqrt{m})$ and $Q(\sqrt{m}) \backslash Q$ is the disjoint union of $Q^{*}(\sqrt{n})$ for all n. If $\alpha(a, b, c) \in Q^{*}(\sqrt{n})$ and its conjugate $\bar{\alpha}$ have opposite signs then α is called an ambiguous number (Mushtaq, 1988). A non-empty set Ω with an action of a group $G_{\text {on it, is said to be a }} G_{\text {-set. We say that }} \Omega$ is a transitive $G_{\text {-set if, for any }} p, q$ in Ω there exists a g in G such that $p^{g}=q$.

We are interested in linear-fractional transformations x, y satisfying the relations $x^{2}=y^{r}=1$, with a view to study an action of the group $\langle x, y\rangle$ on real quadratic fields. If $y: z \rightarrow \frac{a z+b}{c z+d}$ is to
act on all real quadratic fields then a, b, c, d must be rational numbers, and can be taken to be integers. Thus $\frac{(a+b)^{2}}{a d-b c}$ is rational. But if $z \rightarrow \frac{a z+b}{c z+d}$ is of order of r, one must have $\frac{(a+b)^{2}}{a d-b c}=\omega+\omega^{-1}+2$, primitive r-th root of unity. Now $\omega+\omega^{-1}$ is rational for a primitive $r_{\text {-th root only if }} r=1,2,3,4 \operatorname{or} 6$, so that these are the only possible orders of ${ }^{y}$. The group $\left\langle x, y: x^{2}=y^{r}=1\right\rangle$ is cyclic of order 2 or $D_{\infty \text { (an }}$ infinite dihedral group) according as $r=1$ or 2 . For $r=3$, the group $\langle x, y\rangle$ is the modular group $\operatorname{PSL}(2, Z)$. The fractional linear transformations x, y with $x(z)=\frac{-1}{2 z}$ and $y(z)=\frac{-1}{2(z+1)}$ generate a subgroup H of the modular group which is isomorphic to the abstract group $\left\langle x, y: x^{2}=y^{4}=1\right\rangle$. It is a standard example from the theory of the modular group. The action of H on the rational projective line $Q \cup\{\infty\}$ is transitive (see Mushtaq et al ., 1997).

In our case, the set $Q(\sqrt{m}) \backslash Q$ is an $H_{\text {-set. It }}$ is noted that H is the free product of $C_{2}=\left\langle x: x^{2}=1\right\rangle$ and $C_{4}=\left\langle x: y^{4}=1\right\rangle$. The action of the modular group $\operatorname{PSL}(2, Z)$ on the real quadratic fields has been discussed in detail in (Mushtaq, 1988) and (M. Aslam Malik et al ., 2005). The actual number of ambiguous numbers in $Q^{*}(\sqrt{n})$ has been discussed in (S. M. Husnine et al., 2005) as a function of n.

In a recent paper M. Aslam Malik and M. Asim Zafar, 2011, have investigated that the cardinality of the set $E_{p}, p_{\text {a prime factor of }} n$, consisting of all classes $[a, b, c](\bmod p)$ of the elements of $Q^{*}(\sqrt{n})$ is $p^{3}-1$ and obtained two proper $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ corresponding to each odd prime divisor of n. M. Aslam Malik and M. Asim Zafar, 2011 have determined the cardinality of the set $E_{p^{r}}, r \geq 1$, consisting of all classes $[a, b, c]\left(\bmod p^{r}\right)$ of the elements of $Q^{*}(\sqrt{n})$ and have determined, for each non-square n, the G_{-}
subsets of an invariant subset $Q^{*}(\sqrt{n})$ of $Q(\sqrt{m}) \backslash Q$ under the modular group action by using classes $[a, b, c](\bmod n)$

In this paper we examine the action of the group H on subsets $Q^{\prime \prime}(\sqrt{n})$ of $Q(\sqrt{m}) \backslash Q$. An action of H and its proper subgroup on $Q(\sqrt{m})$ has been discussed in (Mushtaq et al ., 1993, 1997, 2007). M. Aslam Malik et al ., 2005, examined some properties of real quadratic irrational numbers under the action of H and found some $H_{\text {-subsets of }} Q(\sqrt{m})$. In Lemma 1.1 of (M. Aslam Malik et al., 2005) such properties were discussed for $n \equiv 1,2$ and $3(\bmod 4)$ and prove that $Q^{\prime \prime}(\sqrt{n})$ is the disjoint union of $Q^{* *}(\sqrt{n})$ and $Q^{*:}(\sqrt{4 n})=\left(Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})\right) \cup Q^{* *}(\sqrt{4 n})$

In this paper we extend this result to all nonsquare $n \equiv 0(\bmod 4)$ and show that $Q^{\prime \prime}(\sqrt{n})$ is the disjoint union of $H_{\text {-subsets }} Q^{*:}(\sqrt{n})$ and $Q^{*:}(\sqrt{4 n})$. This reveals that $Q(\sqrt{m}) \backslash Q$ is the union of $Q^{\prime \prime}\left(\sqrt{k^{2} m}\right) \quad \forall k \in N$. However if n and n^{\prime} are two distinct non-square positive integers then $Q^{*}(\sqrt{n}) \cap Q^{*}\left(\sqrt{n^{\prime}}\right)=\phi \quad$ whereas $Q^{\prime \prime}(\sqrt{n}) \cap Q^{\prime \prime}\left(\sqrt{n^{\prime}}\right)$ may not be empty. In particular $Q^{\prime \prime}(\sqrt{n}) \cap Q^{\prime \prime}(\sqrt{4 n})=Q^{*:}(\sqrt{n})$ for each non-square positive integer n. In fact we prove that a superset namely
$Q^{* *}(\sqrt{4 n}) \cup\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* *}(\sqrt{4 n})\right\}$ of $Q^{* *}(\sqrt{4 n})$, is an $H_{\text {-subset of }} Q(\sqrt{m}) \backslash Q$. We have also found $H_{\text {-subsets of }} Q^{*}(\sqrt{4 n})$ such that these may are may not be transitive however they will help in determining the transitive $H_{\text {-subsets (}} H_{\text {-orbits) }}$ of $Q(\sqrt{m}) \backslash Q$.

The notation is standard and we follow (M. Aslam Malik et al. 2005, 37(2005)), (M. Aslam Malik and M. Asim Zafar, 2011) and (M. Aslam Malik and M. Asim Zafar, 2011 submitted). In particular (\cdot / \cdot) denotes

$$
x(Y)=\left\{\frac{-1}{2 \alpha}: \alpha \in Y\right\}
$$

for each subset Y of $Q(\sqrt{m}) \backslash Q$.

Preliminaries:

Let $\alpha=\frac{a+\sqrt{n}}{c}$ with $b=\frac{a^{2}-n}{c}$. We tabulate the actions on $\alpha(a, b, c)$ of x, y and their combinations $y^{2}, x y, y x$ and $y^{2} x$ in the following table for later reference.

Table 1: The action of elements of H on $\alpha \in Q^{\prime \prime}(\sqrt{n})$

α	a	b	c
$x(\alpha)$	$-a$	$\frac{c}{2}$	$2 b$
$y(\alpha)$	$-a-c$	$\frac{c}{2}$	$2(2 a+b+c)$
$y^{2}(\alpha)$	$-3 a-2 b-c$	$2 a+b+c$	$4 a+4 b+c$
$x y(\alpha)$	$a+c$	$2 a+b+c$	c
$y x(\alpha)$	$a-2 b$	b	$-4 a+4 b+c$
$y^{2} x(\alpha)$	$3 a-2 b-c$	$\frac{-4 a+4 b+c}{2}$	$2(-2 a+b+c$,

We list the following results from (M. Aslam Malik et al . 2005, 37(2005)), (M. Aslam Malik and M. Asim Zafar, 2011) and (M. Aslam Malik and M. Asim Zafar, 2011 submitted) for later reference.

Lemma 2.1: (M. Aslam Malik et al ., 2005) Let $\alpha(a, b, c) \in Q^{*}(\sqrt{n})$. Then:

1. If $n \neq 0(\bmod 4)$ then $\frac{\alpha}{2} \in Q^{* *}(\sqrt{n})$ if and only if $2 \mid b$ 。
2. $\frac{\alpha}{2} \in Q^{* * *}(\sqrt{4 n}) \quad$ if and only if 2 Gb .

Theorem 2.2 (M. Aslam Malik et al ., 2005) The set $Q^{\prime \prime}(\sqrt{n})=\left\{\frac{\alpha}{t}: \alpha \in Q^{*}(\sqrt{n}), t=1,2\right\}$
, is invariant under the action of H.
Theorem 2.3 (M. Aslam Malik et al ., 2005) For each non square positive integer $n \equiv 1,2 \operatorname{or} 3(\bmod 4)$, $\left.Q^{* *} \sqrt{n}\right)=\left\{\alpha(a, b, c): \alpha \in Q^{*}(\sqrt{n})\right.$ and $\left.2 \mid c\right\}$ is an $H_{\text {-subset of }} Q^{\prime \prime}(\sqrt{n})$.
It is well known that $G=\left\langle x, y: x^{2}=y^{3}=1\right\rangle$ represents the modular group, where $x(z)=\frac{-1}{z}, y(z)=\frac{z-1}{z}$ transformations.
Theorem 2.4 (M. Aslam Malik et al ., 2005 PUJM) If $n \equiv 0 \operatorname{or} 3(\bmod 4)$,
then
$S=\left\{\alpha \in Q^{*}(\sqrt{n}):\right.$ bor $\left.c \equiv 1(\bmod 4)\right\}$
and
$-S=\left\{\alpha \in Q^{*}(\sqrt{n}):\right.$ bor $\left.c \equiv-1(\bmod 4)\right\}$
are
exactly two disjoint $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo 4 .
Corollary 2.5 (M. Aslam Malik et al ., 2005 PUJM) If $n \equiv 1 \operatorname{or} 2(\bmod 4)$, then S and $-S$, as defined in Theorem 2.4, are not disjoint. W
Theorem 2.6 (M. Aslam Malik and M. Asim Zafar, 2011) Let p be an odd prime factor of n. Then both of $S_{1}^{p}=\left\{\alpha \in Q^{*}(\sqrt{n}):(b / p)\right.$ or $\left.(c / p)=1\right\}$ and
$S_{2}^{p}=\left\{\alpha \in Q^{*}(\sqrt{n}):(b / p)\right.$ or $\left.(c / p)=-1\right\}$ are $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$. In particular,these are the only $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo p.
Theorem 2.7 (M. Aslam Malik and M. Asim Zafar, 2011 submitted) Let p_{1} and p_{2} be distinct odd primes factors of n. Then $S_{1,1}=S_{1}^{p_{1}} \cap S_{1}^{p_{2}}, \quad S_{1,2}=S_{1}^{p_{1}} \cap S_{2}^{p_{2}}$, $S_{2,1}=S_{2}^{p_{1}} \cap S_{1}^{p_{2}}$ and $S_{2,2}=S_{2}^{p_{1}} \cap S_{2}^{p_{2}}$ are four G_{-} subsets of $Q^{*}(\sqrt{n})$. More precisely these are the only
four $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo $p_{1} p_{2}$.
Notation: The four $G_{\text {-subsets defined in Theorem } 2.7}$ can be briefly written as $S_{1 \leq i_{1}, i_{2} \leq 2}$. More generally if n involves r distinct odd prime factors $p_{1}, p_{2}, \ldots, p_{r}$, then $Q^{*}(\sqrt{n})$ is the disjoint union of 2^{r} subsets $S_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2}$ which are invariant under the action of G.
The following theorem extends Theorem 2.7 for all nonsquare positive integers n.
Theorem 2.8 (M. Aslam Malik and M. Asim Zafar, 2011 submitted) Let $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} \quad$ where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes such that n is not equal to a single prime congruent to 1 modulo 8 . Then the number of $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ is 2^{r} namely $S_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2}$ if $k=0$ or 1 . Moreover if $k \geq 2$, then each $G_{\text {-subset }} X$ of these $G_{\text {-subsets further splits into }}$ two proper $G_{\text {-subsets }}\{\alpha \in X:$ bor $c \equiv 1(\bmod 4)\}$ and $\{\alpha \in X:$ bor $c \equiv-1(\bmod 4)\}$. Thus the number of $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ is 2^{r+1} if $k \geq 2$. More precisely these are the only $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo n.
3 Action of $H=\left\langle x, y: x^{2}=y^{4}=1\right\rangle$ on $Q^{*:}(\sqrt{4 n})$
In this section we establish that if n contains r distinct prime factors then $Q^{*:}(\sqrt{4 n})$ is the disjoint union of 2^{r} subsets which are invariant under the action of H. However these H invariant subsets may further split into transitive $H_{\text {-subsets }}\left(H_{\text {-orbits) }}\right.$ of $Q^{*:}(\sqrt{4 n})$, for example $Q^{*:}(\sqrt{4 \cdot 37})$ splits into six orbits namely $(\sqrt{37})^{H}, \quad(-\sqrt{37})^{H}, \quad\left(\frac{1+\sqrt{37}}{3}\right)^{H}, \quad\left(\frac{1+\sqrt{37}}{-3}\right)^{H}$, $\left(\frac{-1+\sqrt{37}}{3}\right)^{H}$ and $\left(\frac{-1+\sqrt{37}}{-3}\right)^{H}$. . All these orbits are
contained in $A_{1}^{p} \cup x\left(A_{1}^{p}\right)$
Lemma 3.1 Let $n \equiv 1,2 \operatorname{or} 3(\bmod 4)$. Let Y be any $G_{\text {-subset of }} Q^{*:}(\sqrt{4 n})$. Then $Y \cup x(Y)$ is an H_{-} subset of $Q^{*:}(\sqrt{4 n})$.
Proof: By Theorem 2.3, we know that $Q^{\prime \prime}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n}) \quad$ is \quad an $\quad H_{\text {-set. }}$ For any $\alpha \in Q^{*:}(\sqrt{4 n})$, proof follows from the equations $x(\alpha)=\frac{-1}{2 \alpha}, \quad x\left(\frac{-1}{2 \alpha}\right)=\alpha \quad y(\alpha)=\frac{-1}{2(\alpha+1)}=\frac{-1}{2 \alpha^{\prime}}$, where $\quad \alpha^{\prime}=\alpha+1 \quad$ and $\quad y\left(\frac{-1}{2 \alpha}\right)=\frac{-1}{2 \beta}$
where $\beta=\frac{-1}{2 \alpha}+1$.

Since every element of the group $H=\left\langle x, y: x^{2}=y^{4}=1\right\rangle$ is a word in the generators x, y of the group H and the transformations $\alpha \mapsto \alpha+1, \alpha \mapsto \alpha-1$ belong to both of the groups G and $H . \mathrm{W}$

Theorem 3.2 Let $n \equiv 1,2 \operatorname{or} 3(\bmod 4)$ be divisible by an odd prime p. Let $A_{1}^{p}=S_{1}^{p} \backslash Q^{* *}(\sqrt{n})$ and $A_{2}^{p}=S_{2}^{p} \backslash Q^{* *}(\sqrt{n})$. Then both $A_{1}^{p} \cup x\left(A_{1}^{p}\right)$ and $A_{2}^{p} \cup x\left(A_{2}^{p}\right) \quad$ are $\quad H_{\text {-subsets }}$ of $Q^{*:}(\sqrt{4 n})$. Consequently the action of H on $Q^{*:}(\sqrt{4 n})$ is intransitive.
Proof: follows from Theorem 2.6 and Lemma 3.1. W Now we extend Theorem 3.2 for each non-square n.
Theorem 3.3 Let $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $k=0$ or 1 . Let $A_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2}=S_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2} \backslash Q^{* *}(\sqrt{n})$. Then $Q^{*:}(\sqrt{4 n})$ is the disjoint union of 2^{r} subsets $A_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2} \cup x\left(A_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2}\right)$ which are invariant under the action of H. More precisely these are the only $H_{\text {-subsets of }} Q^{*}(\sqrt{4 n})$ depending upon classes $[a, b, c]$ modulo n.
Proof: Proof follows from Theorem 2.8 and Lemma 3.1.

W

Theorem 3.4 Let $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $k \geq 2$. If S is any of the $G_{\text {-subsets given in Theorem } 2.8 \text { and }}$ $A=S \backslash Q^{* *}(\sqrt{n})$, then $A \cup x(A)$ is an $H_{\text {-subset of }}$ $Q^{*}(\sqrt{4 n})$. More precisely these are the only H_{-} subsets of $Q^{*:}(\sqrt{4 n})$ depending upon classes $[a, b, c]$ modulo n.
Proof: follows directly from Theorem 2.8 and Lemma 3.1. W

If $n \equiv 0 \operatorname{or} 3(\bmod 4)$, then by Theorem 2.4, S and $-S$ are $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ and hence by Lemma 3.1, $S \cup x(S)$ and $-S \cup x(-S)$ are distinct H_{-} subsets of $Q^{\prime \prime}(\sqrt{n})$. Whereas if $n \equiv 1 \operatorname{or} 2(\bmod 4)$, then by Corollary 2.5 , we know that S and $-S$ are not $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$. However the following lemma shows that $S \cup x(S)$ and $-S \cup x(-S)$ are distinct $H_{\text {-subsets of }} Q^{\prime \prime}(\sqrt{n})$.
Lemma 3.5 Let $X=Y \backslash Q^{* * *}(\sqrt{n})$, where Y is any of the $G_{\text {-subsets of }} Q^{*}(\sqrt{n})$ and $n \equiv 1 \operatorname{or} 2(\bmod 4)$.
Let $\quad S=\{\alpha \in X:$ bor $c \equiv 1(\bmod 4)\} \quad$ and $-S=\{\alpha \in X:$ bor $c \equiv-1(\bmod 4)\}$. Then $S \cup x(S)$ and $-S \cup x(-S)$ are both disjoint H_{-} subsets of $X \cup x(X)$. Consequently the action of H on $X \cup x(X)$ is intransitive.
Proof: As each $g \in H$ is a word in x, y and y^{2}. Also we know that $x^{-1}=x, y^{-1}=y^{3}, \quad\left(y^{2}\right)^{-1}=y^{2}$, $(x y)^{-1}=y^{3} x, \quad(y x)^{-1}=x y^{3} \quad$ and $\quad\left(y^{2} x\right)^{-1}=x y^{2}$. Thus if $\alpha \in S$, then it follows by Table, $y^{2}(\alpha)$, $x y(\alpha)$ and $y x(\alpha)$ belong to S and hence $y^{3} x(\alpha)$ and $x y^{3}(\alpha) \in S_{\text {. However }} x(\alpha), y(\alpha)$ and $y^{2} x(\alpha)$ does not belong to S and hence $y^{3}(\alpha)$ and $x y^{2}(\alpha)$ does not belong to S. Thus by Lemma 2.1 and Table given before Lemma 2.1, $S \cup x(S)$ is an $H_{\text {-subset of }}$
$X \cup x(X)$. Similarly, $-S \cup x(-S)$ is an $H_{\text {-subset }}$ of $X \cup x(X)$.
If $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $k=0$ or 1 then, by Theorem 2.3, $Q^{* *}(\sqrt{n})$ is an $H_{\text {-subset of }} Q^{\prime \prime}(\sqrt{n})$. But if $k \geq 2$, then it is easy to see that $Q^{* *}(\sqrt{n})$ is not an $H_{\text {-subset of }} Q^{\prime \prime}(\sqrt{n})$. However, we prove that a superset of $Q^{* *}(\sqrt{n})$ is an $H_{\text {-subset of }} Q^{\prime \prime}(\sqrt{n})$. For this, we need to establish the following results!
Lemma 3.6 Let $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $k=0$ or 1 . Then

1. $Q^{* *}(\sqrt{4 n})=Q^{\prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ and 2.
$Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})=\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* *}(\sqrt{4 n})\right\}$
Proof: 1. Let $\frac{a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n})=\left\{\frac{a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n})\right.$ and $\left.2 \mid c\right\}$. Then $\frac{a^{2}-4 n}{c}$ and $\frac{c}{2}$
$\left(a, \frac{a^{2}-4 n}{c}, c\right)=1$. As c and $4 n$ are both even, so a must be even. Let $a=2 a^{\prime}, c=2 c^{\prime}$. Then $\frac{a^{2}-4 n}{c}=2\left(\frac{a^{\prime 2}-n}{c^{\prime}}\right)$
$\left(a, \frac{a^{2}-4 n}{c}, c\right) \neq$ must be odd as otherwise 1. So $c^{\prime}=2 c^{\prime \prime}$. This shows that $\frac{\left(a^{\prime}\right)^{2}-n}{c^{\prime \prime}}$ is an integer, while
integer for otherwise $\frac{a^{2}-4 n}{c}$
integer for otherwise is not odd, a contradiction.

Also
$\left(a, \frac{a^{2}-4 n}{c}, c\right)=1 \Leftrightarrow\left(a^{\prime}, \frac{\left(a^{\prime}\right)^{2}-n}{c^{\prime \prime}}, c^{\prime \prime}\right)=1$.
Therefore
$\frac{a+\sqrt{4 n}}{c}=\frac{a^{\prime}+\sqrt{n}}{c^{\prime}}=\frac{a^{\prime}+\sqrt{n}}{c^{\prime \prime}}$ belongs to $Q^{*}(\sqrt{n})$.
Thus $\frac{a+\sqrt{4 n}}{c}$ belongs to $Q^{\prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$.
Conversely let $\frac{a+\sqrt{n}}{2 c} \in Q^{\prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$
Lemma 2.1, $\frac{a+\sqrt{n}}{2 c} \in Q^{*}(\sqrt{n}) \quad$ such that $\frac{a^{2}-n}{c}$ is
odd and hence $\frac{a+\sqrt{n}}{2 c}=\frac{2 a+\sqrt{4 n}}{4 c}$ belongs to $Q^{*}(\sqrt{4 n})$ Obviously $\frac{a+\sqrt{n}}{2 c}$ belongs to
$Q^{* *}(\sqrt{4 n})$. This completes the first part of Lemma 3.6.
2. We now prove that

The following lemma is an extension of Lemma 3.6 for all $n \equiv 0(\bmod 4)$ and its proof is analogous to the proof of above lemma.
Lemma 3.7 Let $n \equiv 0(\bmod 4)$. Then 1.
$\left(Q^{*}\left(\sqrt{\frac{n}{4}}\right) \backslash Q^{* *}\left(\sqrt{\frac{n}{4}}\right)\right) \cup Q^{* *}(\sqrt{4 n})=Q^{\prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ and
2.
$Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})=\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* * *}(\sqrt{4 n})\right\}$
Theorem3.8 Let $n \equiv 1,2 \operatorname{or} 3(\bmod 4)$. Then $Q^{* *}(\sqrt{4 n}) \cup\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* *}(\sqrt{4 n})\right\}$ is an $H_{\text {-subset of }} Q^{\prime \prime}(\sqrt{n})$.
Proof: By Lemma 3.6, $\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* *}(\sqrt{4 n})\right\}=Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})(\sqrt{4 n})=Q^{\prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ and $\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* *}(\sqrt{4 n})\right\}=Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})$
Thus
. For this, let c. Then $4 a^{2}-4 n$
c is an integer and
$4 a^{2}-4 n \quad$ is an $H_{\text {-subset }}$ of $Q^{\prime \prime}(\sqrt{n})$ if and only if $\left(2 a, \frac{4 a-4 n}{c}, c\right)=1 \Leftrightarrow\left(a, \frac{a-n}{c}, c\right)=1 n \neq 0(\bmod 4)$. Also since $Q^{*}(\sqrt{n})$ is not $H_{\text {-subset }}$
This implies that

$$
\frac{2 a+\sqrt{4 n}}{2 c}=\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})
$$

Conversely, suppose
that
$\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})$
. Then clearly C is odd

$$
\left(a, \frac{a^{2}-n}{c}, c\right)=1
$$

$\left(a, \frac{a^{2}-n}{c}, c\right)=1 \Leftrightarrow\left(2 a, \frac{4 a^{2}-4 n}{c}, c\right)=1$.
Also

Thus
$\frac{a+\sqrt{n}}{c}=\frac{2 a+\sqrt{4 n}}{2 c}=\frac{1}{2}\left(\frac{2 a+\sqrt{4 n}}{c}\right)$,
$\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{4 n})$
This completes the proof. W
$Q^{\prime \prime}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})=Q^{* *}(\sqrt{4 n}) \cup\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* * *}(\sqrt{4 n})\right\}$ is an $H_{\text {-subset of } Q^{\prime \prime}(\sqrt{n}) \text { if and only if }}^{n \neq 0(\bmod 4) \text {. Also since } Q^{*}(\sqrt{n}) \text { is not } H_{\text {-subset }}}$ so $Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})$ and $Q^{\prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ are not $H_{\text {-subsets of }} Q^{\prime \prime}(\sqrt{n})$. By Theorems 2.2, 2.3 we know that $Q^{\prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ is an $H_{\text {-subset of }}$ $Q^{\prime \prime}(\sqrt{n})$. Thus $Q^{*}(\sqrt{4 n}) \cup\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* *}(\sqrt{4 n})\right\}$ is an $H_{\text {-subset of }} Q^{\prime \prime}(\sqrt{n})$. W
The following remark is an immediate consequence of Lemma 3.6 and Theorem 3.8.
Remark $3.9 \quad$ Let $n \neq 0(\bmod 4)$. Then $Q^{\prime \prime}(\sqrt{n})=Q^{* *}(\sqrt{n}) \cup Q^{*:}(\sqrt{4 n})$, where $Q^{*:}(\sqrt{4 n})=\left(Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})\right) \cup Q^{* *}(\sqrt{4 n})$
The following theorem is an extension of Theorem 3.8 for all $n \equiv 0(\bmod 4)$ whose proof is analogous to the proof of above Theorem.

Theorem 3.10 Let $n \equiv 0(\bmod 4)$. Then
$Q^{* *}(\sqrt{4 n}) \cup\left\{\frac{\alpha}{2}: \alpha=\frac{2 a+\sqrt{4 n}}{c} \in Q^{*}(\sqrt{4 n}) \backslash Q^{* *}(\sqrt{4 n})\right\}$ is an $H_{\text {-subset of }} Q^{\prime \prime}(\sqrt{n})$. W
Theorem 3.11 Let $n \equiv 0(\bmod 4) \quad$ and $\alpha(a, b, c) \in Q^{*}(\sqrt{n})$. Then:

1. If a is odd then $\frac{\alpha}{2}$ belongs to $Q^{* *}(\sqrt{4 n})$.
2. If a is even then $\frac{\alpha}{2}$ belongs to $Q^{*}\left(\sqrt{\frac{n}{4}}\right) \backslash Q^{* *}\left(\sqrt{\frac{n}{4}}\right) \quad$ or $\quad Q^{* *}(\sqrt{4 n})$
according as $\alpha \in Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ or $\alpha \in Q^{* *}(\sqrt{n})$.
Proof: Let $\quad n \equiv 0(\bmod 4)$. Let $\alpha=\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})$

Then we have the following

1. If a is odd then $\left(a^{2}-n\right)$ is odd. So b cannot be even. Therefore, by second part of Lemma 2.1, $\frac{\alpha}{2}$ belongs to $Q^{* * *}(\sqrt{4 n})$.
2. If a is even then $\left(a^{2}-n\right) \equiv 0(\bmod 4)$. So b, c cannot be both even, as otherwise $(a, b, c) \neq 1$. Thus exactly one of b, c is even. Therefore, again by second part of Lemma 2.1, if b is odd then $\frac{\alpha}{2}$ belongs to $Q^{* * *}(\sqrt{4 n})$. If b is even then, from the proof of Lemma 3.6(2), $\frac{\alpha}{2}$ belongs to $Q^{*}\left(\sqrt{\frac{n}{4}}\right) \backslash Q^{* *}\left(\sqrt{\frac{n}{4}}\right)$. That is, $\frac{\alpha}{2}$ belongs to $Q^{*}\left(\sqrt{\frac{n}{4}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{n}{4}}\right)$ or $Q^{* *}(\sqrt{4 n})$ according as

$$
\begin{equation*}
\alpha \in Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n}) \tag{or}
\end{equation*}
$$ $\alpha \in Q^{* *}(\sqrt{n})$. W

The following example illustrates the above theorem.
Example 3.12 Let $n=8$. Then $\alpha=\frac{1+\sqrt{8}}{1} \in Q^{*}(\sqrt{8}) \quad \frac{\alpha}{2}=\frac{1+\sqrt{8}}{2}=\frac{2+\sqrt{32}}{4} \in Q^{*}(\sqrt{32})$.

Also $\beta=\frac{2+\sqrt{8}}{1} \in Q^{*}(\sqrt{8})$ but $\frac{\beta}{2}=\frac{1+\sqrt{2}}{1} \in Q^{\prime \prime}(\sqrt{2}) \backslash Q^{\prime *}(\sqrt{2})$. Similarly ${ }^{\gamma=\frac{2+\sqrt{8}}{4} \in Q^{\prime \prime \prime}(\sqrt{8})}$ whereas $\frac{\gamma}{2}=\frac{4+\sqrt{32}}{16} \in Q^{\prime \prime \prime}(\sqrt{32})$. By summarizing the above results we have the following Theorem 3.13 Let $n \equiv 0(\bmod 4)$. Then $Q^{\prime \prime}(\sqrt{n})=Q^{*:}(\sqrt{n}) \cup Q^{*:}(\sqrt{4 n})$, where

$$
Q^{*}(\sqrt{4 n})=\left(Q^{*}(\sqrt{n}) \backslash Q^{* *}(\sqrt{n})\right) \cup Q^{* *}(\sqrt{4 n})
$$

$$
Q^{*:}(\sqrt{n})=\left(Q^{*}\left(\sqrt{\frac{n}{4}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{n}{4}}\right)\right) \cup Q^{* * *}(\sqrt{n})
$$

Proof: Follows from Lemma 3.7 and Theorem 3.10. W We conclude this paper with the following examples for illustration of Remark 3.9 and Theorem 3.13. For $n=2$, $4 n=8, \quad Q^{*:}(\sqrt{8})=(\sqrt{2})^{H} \cup(-\sqrt{2})^{H}$,
$Q^{*:}(\sqrt{32})=(\sqrt{8})^{H} \cup(-\sqrt{8})^{H}$ $Q^{*}(\sqrt{32})=(\sqrt{8})^{H} \cup(-\sqrt{8})^{H}$. So $Q^{\prime \prime}(\sqrt{8})$ has exactly 4 orbits under the action of H. Also if $n=3$, $4 n=12, \quad Q^{*}(\sqrt{12})=(\sqrt{3})^{H} \cup(-\sqrt{3})^{H}$, $Q^{*}(\sqrt{48})=(\sqrt{12})^{H} \cup(-\sqrt{12})^{H}$. So $Q^{\prime \prime}(\sqrt{12})$ has exactly 4 orbits under the action of H. Similarly if $n=5,4 n=20, Q^{*:}(\sqrt{20})=(\sqrt{5})^{H} \cup(-\sqrt{5})^{H}$, $Q^{*:}(\sqrt{80})=(\sqrt{20})^{H} \cup(-\sqrt{20})^{H}$. So $Q^{\prime \prime}(\sqrt{20})$ has exactly 4 orbits under the action of H.

REFERENCES

Malik M. A., S. M. Husnine, and A. Majeed. Properties of Real Quadratic Irrational Numbers under the action of group $H=\left\langle x, y: x^{2}=y^{4}=1\right\rangle$. Studia Scientiarum Mathematicarum Hungarica, 42 (4): 371-386 (2005).
Malik M. A., S. M. Husnine and A. Majeed. Intrasitive Action of the Modular Group $\operatorname{PSL}(2, Z)$ on a subset $Q^{*}\left(\sqrt{k^{2} m}\right)$ of $Q(\sqrt{m})$. PUJM, 37: 31-38 (2005).
Aslam. M., Q Mushtaq. Action of $\left\langle y, t: y^{4}=t^{4}=1\right\rangle$ on $Q(\sqrt{n})$, Southeast Asian Bulletin of Mathematics 31 (6): 1049-1056 (2007).
Malik M. A., M. Asim Zafar. Real Quadratic Irrational Numbers and Modular Group Action, Southeast Asian Bulletin of Mathematics 35 (3): 439-445 (2011).

Malik M. A., M. Asim Zafar. $G_{\text {-subsets of an invariant }}$ subset $Q^{*}\left(\sqrt{k^{2} m}\right)$ of $Q(\sqrt{m}) \backslash Q$ under the Modular Group Action (submitted for publication).
Mushtaq Q. Modular Group acting on Real Quadratic Fields. Bull. Austral. Math. Soc. 3 (7): 303-309 (1988).

Mushtaq Q., M. Aslam. Group Generated by two elements of orders 2 and 4 acting on real quadratic fields, Acta Mathematica Sinica, New Series, 9 (1): 48-54 (1993).

Mushtaq Q., M. Aslam. Transitive Action of a Two Generator group on rational Projective Line, Southeast Asian Bulletin of Mathematics 1: 203207 (1997).
Husnine S. M., M. Aslam Malik, and A. Majeed. On Ambiguous Numbers of an invariant subset $Q^{*}\left(\sqrt{k^{2} m}\right)$ of $Q(\sqrt{m})$ under the action of the Modular Group $\operatorname{PSL}(2, Z)$. Studia Scientiarum Mathematicarum Hungarica 42(4): 401-412 (2005).

