CERTAIN *H* -SUBSETS OF $Q(\sqrt{m}) \setminus Q$ UNDER THE ACTION OF $H = \langle x, y : x^2 = y^4 = 1 \rangle$

M. Aslam Malik, S. M Husnine and M. Asim Zafar

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan. Corresponding Author E-mail: malikpu@yahoo.com

Let $C = C \cup \{\infty\}$ be the extended complex plane and $H = \langle x, y : x^2 = y^4 = 1 \rangle$, where $x(z) = \frac{-1}{2z}$ and $y(z) = \frac{-1}{2(z+1)}$ are the linear fractional transformations from $C \to C'$. Let m be a square-free $Q^*(\sqrt{n}) = \{\frac{a+\sqrt{n}}{c} : a, c \neq 0, b = \frac{a^2-n}{c} \in Z \text{ and } (a,b,c) = 1\}$ where $n = k^2m$, is a proper subset of $Q(\sqrt{m})$ for all $k \in N$. For non-square $n = 2^h \prod_{i=1}^r p_i^{k_i}$, it was proved in an earlier paper that the set $Q^*(\sqrt{n}) = \{\frac{\alpha}{t} : \alpha \in Q^*(\sqrt{n}), t = 1, 2\}$ is an H-set for all $h \ge 0$ whereas if h = 0 or 1 then $Q^*(\sqrt{n}) = \{\frac{a+\sqrt{n}}{c} : \frac{a+\sqrt{n}}{c} \in Q^*(\sqrt{n}), 2|c\}$ and $Q^*(\sqrt{n}) = Q^*(\sqrt{n}) \cup Q^{**}(\sqrt{4n})$ are disjoint H-subsets of $Q^*(\sqrt{n}) = Q^*(\sqrt{n}) \cup Q^{**}(\sqrt{4n})$ and also determine the proper H-subsets of $Q^{**}(\sqrt{4n})$. In particular, $Q(\sqrt{m}) \setminus Q = \cup Q^*(\sqrt{k^2m})$ for all $k \in N$. AMS Mathematics subject classification (2000): 05C25, 11E04, 20G15

Keywords: Real quadratic fields, orbits, linear fractional transformations.

INTRODUCTION

Throughout the paper we take m as a square free positive integer. Since every element of $Q(\sqrt{m}) \setminus Q$ can be expressed uniquely as $\frac{a+\sqrt{n}}{c}$, where $n = k^2m$, k is any positive integer and $a, b = \frac{a^2 - n}{c}$ and c are relatively prime integers and we denote it by $\alpha(a, b, c)$. Then $Q^*(\sqrt{n}) = \{\frac{a+\sqrt{n}}{c}: a, c, b = \frac{a^2 - n}{c} \in Z \text{ and } (a, b, c) = 1\}$

$$Q^{*}(\sqrt{n}) = \{\frac{a + \sqrt{n}}{c} : a, c, b = \frac{a - n}{c} \in Z \text{ and } (a, b, c) = 1\},\$$

$$Q^{*}(\sqrt{n}) = \{\frac{\alpha}{t} : \alpha \in Q^{*}(\sqrt{n}), t = 1, 2\},\$$

$$Q^{**}\sqrt{n}) = \{\frac{a + \sqrt{n}}{c} : \frac{a + \sqrt{n}}{c} \in Q^{*}(\sqrt{n}) \text{ and } 2 \mid c\}$$

are subsets of the real quadratic field $Q(\sqrt{m})$ and $Q(\sqrt{m}) \setminus Q$ is the disjoint union of $Q^*(\sqrt{n})$ for all n. If $\alpha(a,b,c) \in Q^*(\sqrt{n})$ and its conjugate $\overline{\alpha}$ have opposite signs then α is called an ambiguous number (Mushtaq, 1988). A non-empty set Ω with an action of a group G on it, is said to be a G-set. We say that Ω is a transitive G-set if, for any P, q in Ω there exists a g in G such that $p^g = q$.

We are interested in linear-fractional transformations x, y satisfying the relations $x^2 = y^r = 1$, with a view to study an action of the group az + b

 $\langle x, y \rangle$ on real quadratic fields. If $y: z \to \frac{az+b}{cz+d}$ is to

act on all real quadratic fields then a,b,c,d must be rational numbers, and can be taken to be integers. Thus

 $\frac{(a+b)^2}{ad-bc} \xrightarrow[\text{is rational. But if} z \rightarrow \frac{az+b}{cz+d} \text{ is of order of } r,$ one must have $\frac{(a+b)^2}{ad-bc} = \omega + \omega^{-1} + 2$, where ω is a

one must have $ad - bc = w + w + 2^{2}$, where ω is a primitive r -th root of unity. Now $\omega + \omega^{-1}$ is rational for a primitive r -th root only if r = 1, 2, 3, 4 or 6, so that these are the only possible orders of y. The group $\langle x, y : x^{2} = y^{r} = 1 \rangle$ is cyclic of order 2 or D_{∞} (an infinite dihedral group) according as r = 1 or 2. For r = 3, the group $\langle x, y \rangle$ is the modular group PSL(2, Z). The fractional linear transformations x, y with $x(z) = \frac{-1}{2z}$ and $y(z) = \frac{-1}{2(z+1)}$ generate a subgroup U

H of the modular group which is isomorphic to the abstract group $\langle x, y : x^2 = y^4 = 1 \rangle$. It is a standard example from the theory of the modular group. The action of *H* on the rational projective line $Q \cup \{\infty\}$ is transitive (see Mushtaq *et al*., 1997).

In our case, the set $Q(\sqrt{m}) \setminus Q$ is an H-set. It is noted that H is the free product of $C_2 = \langle x : x^2 = 1 \rangle$ and $C_4 = \langle x : y^4 = 1 \rangle$. The action of the modular group PSL(2,Z) on the real quadratic fields has been discussed in detail in (Mushtaq, 1988) and (M. Aslam Malik *et al*., 2005). The actual number of ambiguous numbers in $Q^*(\sqrt{n})$ has been discussed in (S. M. Husnine *et al*., 2005) as a function of n.

In a recent paper M. Aslam Malik and M. Asim Zafar, 2011, have investigated that the cardinality of the set E_p , p a prime factor of n, consisting of all classes $[a,b,c](mod \ p)$ of the elements of $Q^*(\sqrt{n})$ is p^3-1 and obtained two proper G-subsets of $Q^*(\sqrt{n})$ corresponding to each odd prime divisor of n. M. Aslam Malik and M. Asim Zafar, 2011 have determined the cardinality of the set $\sum_{p^r}^{p^r}$, $r \ge 1$, consisting of all classes $[a,b,c](mod \ p^r)$ of the elements of $Q^*(\sqrt{n})$ and have determined, for each non-square n, the G-

subsets of an invariant subset $Q^*(\sqrt{n})$ of $Q(\sqrt{m}) \setminus Q$ under the modular group action by using classes [a,b,c](mod n)

In this paper we examine the action of the group *H* on subsets $Q^{(n)}(\sqrt{n})$ of $Q(\sqrt{m}) \setminus Q$. An action of H and its proper subgroup on $Q(\sqrt{m})$ has been discussed in (Mushtaq et al., 1993, 1997, 2007). M. Aslam Malik *et al*., 2005, examined some properties of real quadratic irrational numbers under the action of Hand found some H -subsets of $Q(\sqrt{m})$. In Lemma 1.1 of (M. Aslam Malik et al., 2005) such properties were discussed for $n \equiv 1, 2 \text{ and } 3 \pmod{4}$ and prove that $Q^{'}(\sqrt{n})$ is the disjoint union of $Q^{**}(\sqrt{n})$ and $Q^{*:}(\sqrt{4n}) = \left(Q^{*}(\sqrt{n}) \setminus Q^{**}(\sqrt{n})\right) \cup Q^{**}(\sqrt{4n})$ In this paper we extend this result to all nonsquare $n \equiv 0 \pmod{4}$ and show that $Q''(\sqrt{n})$ is the disjoint union of H-subsets $Q^{*}(\sqrt{n})$ and $Q^{*}(\sqrt{4n})$. This reveals that $Q(\sqrt{m}) \setminus Q$ is the union of $Q^{"}(\sqrt{k^2m}) \quad \forall k \in N$. However if n and n' are two distinct non-square positive integers then $Q^*(\sqrt{n}) \cap Q^*(\sqrt{n'}) = \phi$ whereas $Q^*(\sqrt{n}) \cap Q^*(\sqrt{n'})$ may not be empty. In particular $Q^{"}(\sqrt{n}) \cap Q^{"}(\sqrt{4n}) = Q^{*}(\sqrt{n})$ for each non-square positive integer n. In fact we prove that a superset namely $Q^{**}(\sqrt{4n}) \cup \{\frac{\alpha}{2} : \alpha = \frac{2a + \sqrt{4n}}{c} \in Q^{*}(\sqrt{4n}) \setminus Q^{**}(\sqrt{4n})\}$ of $Q^{**}(\sqrt{4n})$, is an *H*-subset of $Q(\sqrt{m}) \setminus Q$. We have also found H-subsets of $Q^{*}(\sqrt{4n})$ such that these may are may not be transitive however they will

help in determining the transitive
$$H$$
-subsets (H -orbits)
of $Q(\sqrt{m}) \setminus Q$.

The notation is standard and we follow (M. Aslam Malik *et al* . 2005, 37(2005)), (M. Aslam Malik and M. Asim Zafar, 2011) and (M. Aslam Malik and M. Asim Zafar, 2011 submitted). In particular (\cdot/\cdot) denotes $x(Y) = \{\frac{-1}{2\alpha} : \alpha \in Y\}$ the Legendre symbol and

for each subset $Y_{\text{of}} Q(\sqrt{m}) \setminus Q$

Preliminaries:

$$\alpha = \frac{a + \sqrt{n}}{b}$$
 $b = \frac{a^2 - n}{b}$

Let *c* with *c*. We tabulate the actions on $\alpha(a,b,c)$ of x, y and their combinations y^2, xy, yx and y^2x in the following table for later reference.

Table	1:	The	action	of	elements	of	Η	on
$\alpha \in O^{'}(\sqrt{n})$								

α	а	b	С
$x(\alpha)$	<i>-a</i>	$\frac{c}{2}$	2 <i>b</i>
$y(\alpha)$	-a-c	$\frac{c}{2}$	2(2a+b+c)
$y^2(\alpha)$	-3a-2b-c	2a+b+c	4a+4b+c
$xy(\alpha)$	<i>a</i> + <i>c</i>	2a+b+c	С
$yx(\alpha)$	a-2b	b	-4a+4b+c
$y^2 x(\alpha)$	3a-2b-c	$\frac{-4a+4b+c}{2}$	2(-2a+b+c)

We list the following results from (M. Aslam Malik *et al* . 2005, 37(2005)), (M. Aslam Malik and M. Asim Zafar, 2011) and (M. Aslam Malik and M. Asim Zafar, 2011 submitted) for later reference.

Lemma 2.1: (M. Aslam Malik *et al*., 2005) Let $\alpha(a,b,c) \in Q^*(\sqrt{n})$. Then: 1. If $n \neq 0 \pmod{4}$ then $\frac{\alpha}{2} \in Q^{**}(\sqrt{n})$ if and only if $2 \mid b$

$$\frac{\alpha}{2} \in Q^{**}(\sqrt{4n})$$
 if and only if 2 \mathbb{C}

Theorem 2.2 (M. Aslam Malik *et al*., 2005) The set $Q''(\sqrt{n}) = \{\frac{\alpha}{t} : \alpha \in Q^*(\sqrt{n}), t = 1, 2\}$, is invariant

under the action of H.

Theorem 2.3 (M. Aslam Malik *et al*., 2005) For each non square positive integer $n \equiv 1, 2 \text{ or } 3 \pmod{4}$, $Q^{**}\sqrt{n} = \{\alpha(a,b,c) : \alpha \in Q^{*}(\sqrt{n}) \text{ and } 2 \mid c\}$ is an H-subset of $Q^{''}(\sqrt{n})$.

It is well known that $G = \langle x, y : x^2 = y^3 = 1 \rangle$ represents the modular group, where $x(z) = \frac{-1}{z}, y(z) = \frac{z-1}{z}$

z z are linear fractional transformations.

Theorem 2.4 (M. Aslam Malik *et al*., 2005 PUJM) If $n \equiv 0 \text{ or } 3 \pmod{4}$, then

$$S = \{ \alpha \in Q^*(\sqrt{n}) : b \text{ or } c \equiv 1 \pmod{4} \}$$
 and

$$-S = \{ \alpha \in Q^*(\sqrt{n}) : b \text{ or } c \equiv -1 (mod \ 4) \}$$
are

exactly two disjoint G-subsets of $Q^*(\sqrt{n})$ depending upon classes [a,b,c] modulo 4.

Corollary 2.5 (M. Aslam Malik *et al*., 2005 PUJM) If $n \equiv 1 \text{ or } 2 \pmod{4}$, then *S* and *-S*, as defined in Theorem 2.4, are not disjoint. W

Theorem 2.6 (M. Aslam Malik and M. Asim Zafar, 2011) Let P be an odd prime factor of n. Then both of $S_1^p = \{ \alpha \in Q^*(\sqrt{n}) : (b / p) \text{ or } (c / p) = 1 \}$ and

 $S_{2}^{p} = \{ \alpha \in Q^{*}(\sqrt{n}) : (b / p) \text{ or } (c / p) = -1 \}$ are *G*-subsets of $Q^{*}(\sqrt{n})$. In particular, these are the only *G*-subsets of $Q^{*}(\sqrt{n})$ depending upon classes $[a,b,c] \mod p$.

Theorem 2.7 (M. Aslam Malik and M. Asim Zafar, 2011 submitted) Let P_1 and P_2 be distinct odd primes factors of n. Then $S_{1,1} = S_1^{p_1} \cap S_1^{p_2}$, $S_{1,2} = S_1^{p_1} \cap S_2^{p_2}$, $S_{2,1} = S_2^{p_1} \cap S_1^{p_2}$ and $S_{2,2} = S_2^{p_1} \cap S_2^{p_2}$ are four G subsets of $Q^*(\sqrt{n})$. More precisely these are the only four G-subsets of $Q^*(\sqrt{n})$ depending upon classes [a,b,c] modulo p_1p_2 .

Notation: The four G-subsets defined in Theorem 2.7 can be briefly written as $S_{1 \le i_1, i_2 \le 2}$. More generally if *n* involves r distinct odd prime factors $p_1, p_2, ..., p_r$, then $Q^*(\sqrt{n})$ is the disjoint union of 2^r subsets $S_{1 \le i_1, i_2, i_3, \dots, i_r \le 2}$ which are invariant under the action of G

The following theorem extends Theorem 2.7 for all nonsquare positive integers n.

Theorem 2.8 (M. Aslam Malik and M. Asim Zafar, 2011 $n = 2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ Let submitted) where p_1, p_2, \dots, p_r are distinct odd primes such that *n* is not equal to a single prime congruent to $1 \mod 8$. Then the number of G-subsets of $Q^*(\sqrt{n})$ is 2^r namely $S_{1 \le i_1, i_2, i_3, \dots, i_r \le 2}$ if k = 0 or 1. Moreover if $k \ge 2$, then each $G_{-subset} X_{of these} G_{-subsets further splits into}$ two proper G-subsets { $\alpha \in X : b \text{ or } c \equiv 1 \pmod{4}$ } and $\{\alpha \in X : b \text{ or } c \equiv -1 \pmod{4}\}$. Thus the number of G-subsets of $Q^*(\sqrt{n})$ is 2^{r+1} if $k \ge 2$. More precisely these are the only $G_{\text{-subsets of }}Q^*(\sqrt{n})$ depending upon classes $[a,b,c] \mod n$.

3 Action of $H = \langle x, y : x^2 = y^4 = 1 \rangle$ on $Q^*(\sqrt{4n})$

In this section we establish that if n contains r distinct prime factors then $Q^{*}(\sqrt{4n})$ is the disjoint union of 2^r subsets which are invariant under the action of H. However these H invariant subsets may further split into transitive *H*-subsets (*H*-orbits) of $Q^{*}(\sqrt{4n})$ for example Q^{*} ($\sqrt{4\cdot}37$) splits into six orbits namely

$$(\sqrt{37})^{H}$$
, $(-\sqrt{37})^{H}$, $(\frac{1+\sqrt{37}}{3})^{H}$, $(\frac{1+\sqrt{37}}{-3})^{H}$,
 $(\frac{-1+\sqrt{37}}{3})^{H}$ and $(\frac{-1+\sqrt{37}}{-3})^{H}$. All these orbits are

contained in $A_1^p \cup x(A_1^p)$

Lemma 3.1 Let $n \equiv 1, 2 \text{ or } 3 \pmod{4}$. Let Y be any $G_{\text{-subset of }} Q^{*} (\sqrt{4n})_{\text{. Then }} Y \cup x(Y)_{\text{ is an }} H_{\text{-}}$ subset of $Q^{*}(\sqrt{4n})$.

Proof: By Theorem 2.3, we know that $Q^{'}(\sqrt{n}) \setminus Q^{**}(\sqrt{n})$ is an H-set. For any $\alpha \in Q^{*:}(\sqrt{4n})$, proof follows from the equations $x(\alpha) = \frac{-1}{2\alpha} \qquad x(\frac{-1}{2\alpha}) = \alpha \qquad y(\alpha) = \frac{-1}{2(\alpha+1)} = \frac{-1}{2\alpha'}$ where $\alpha' = \alpha + 1$ and $y(\frac{-1}{2\alpha}) = \frac{-1}{2\beta}$

where

 $\beta = \frac{-1}{2\alpha} + 1$. Since every element of the group $H = \langle x, y : x^2 = y^4 = 1 \rangle$ is a word in the generators x, y of the group H and the transformations $\alpha \mapsto \alpha + 1$, $\alpha \mapsto \alpha - 1$ belong to both of the groups $G_{\text{and}} H$ W

Theorem 3.2 Let $n \equiv 1, 2 \text{ or } 3 \pmod{4}$ be divisible by an odd prime p. Let $A_1^p = S_1^p \setminus Q^{**}(\sqrt{n})$ and $A_2^p = S_2^p \setminus Q^{**}(\sqrt{n})$ Then both $A_1^p \cup x(A_1^p)$ and $A_2^p \cup x(A_2^p)$ are *H*-subsets of $Q^*(\sqrt{4n})$. Consequently the action of H on $Q^{*}(\sqrt{4n})$ is intransitive.

Proof: follows from Theorem 2.6 and Lemma 3.1. W Now we extend Theorem 3.2 for each non-square n.

Theorem 3.3 Let $n = 2^k p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where p_1, p_2, \dots, p_r are distinct odd primes and k = 0 or 1. Let $A_{1 \le i_1, i_2, i_3, \dots, i_r \le 2} = S_{1 \le i_1, i_2, i_3, \dots, i_r \le 2} \setminus Q^{**}(\sqrt{n})$. Then $Q^{*}(\sqrt{4n})$ is the disjoint union of 2^r subsets $A_{1 \le i_1, i_2, i_3, \dots, i_r \le 2} \cup x(A_{1 \le i_1, i_2, i_3, \dots, i_r \le 2})$ which are invariant under the action of H. More precisely these are the only *H*-subsets of $Q^{*}(\sqrt{4n})$ depending upon classes [a,b,c] modulo n. Proof: Proof follows from Theorem 2.8 and Lemma 3.1. W

Theorem 3.4 Let $n = 2^k p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where p_1, p_2, \dots, p_r are distinct odd primes and $k \ge 2$. If S is any of the G-subsets given in Theorem 2.8 and $A = S \setminus Q^{**}(\sqrt{n})$, then $A \cup x(A)$ is an H-subset of $Q^{*:}(\sqrt{4n})$. More precisely these are the only H-subsets of $Q^{*:}(\sqrt{4n})$ depending upon classes [a,b,c] modulo n. *Proof:* follows directly from Theorem 2.8 and Lemma 3.1. W

If $n \equiv 0 \text{ or } 3 \pmod{4}$, then by Theorem 2.4, S and -S are G-subsets of $Q^*(\sqrt{n})$ and hence by Lemma 3.1, $S \cup x(S)$ and $-S \cup x(-S)$ are distinct Hsubsets of $Q^{''}(\sqrt{n})$. Whereas if $n \equiv 1 \text{ or } 2 \pmod{4}$, then by Corollary 2.5, we know that S and -S are not G-subsets of $Q^*(\sqrt{n})$. However the following lemma shows that $S \cup x(S)$ and $-S \cup x(-S)$ are distinct H-subsets of $Q^{''}(\sqrt{n})$.

Lemma 3.5 Let $X = Y \setminus Q^{**}(\sqrt{n})$, where Y is any of the G_{-subsets of} $Q^*(\sqrt{n})$ and $n \equiv 1 \text{ or } 2 \pmod{4}$. $S = \{ \alpha \in X : b \text{ or } c \equiv 1 \pmod{4} \}$ Let and $-S = \{ \alpha \in X : b \text{ or } c \equiv -1 (mod \ 4) \}$ Then $S \cup x(S)$ and $-S \cup x(-S)$ are both disjoint H. subsets of $X \cup x(X)$. Consequently the action of H on $X \cup x(X)$ is intransitive. *Proof*: As each $g \in H$ is a word in x, y and y^2 . Also we know that $x^{-1} = x$, $y^{-1} = y^3$, $(y^2)^{-1} = y^2$ $(xy)^{-1} = y^{3}x$ $(yx)^{-1} = xy^{3}$ and $(y^{2}x)^{-1} = xy^{2}$ Thus if $\alpha \in S$, then it follows by Table, $y^2(\alpha)$, $xy(\alpha)$ and $yx(\alpha)$ belong to S and hence $y^3x(\alpha)$ and $xy^3(\alpha) \in S$. However $x(\alpha)$, $y(\alpha)$ and $y^2x(\alpha)$ does not belong to S and hence $y^3(\alpha)$ and $xy^2(\alpha)$ does not belong to S. Thus by Lemma 2.1 and Table given before Lemma 2.1, $S \cup x(S)$ is an *H*-subset of $X \cup x(X)$. Similarly, $-S \cup x(-S)$ is an H-subset of $X \cup x(X)$.

If $n = 2^k p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where p_1, p_2, \dots, p_r are distinct odd primes and k = 0 or 1 then, by Theorem 2.3, $Q^{**}(\sqrt{n})$ is an H-subset of $Q^{''}(\sqrt{n})$. But if $k \ge 2$, then it is easy to see that $Q^{**}(\sqrt{n})$ is not an H-subset of $Q^{''}(\sqrt{n})$. However, we prove that a superset of $Q^{**}(\sqrt{n})$ is an H-subset of $Q^{''}(\sqrt{n})$. For this, we need to establish the following results!

Lemma 3.6 Let $n = 2^k p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where P_1, P_2, \dots, P_r are distinct odd primes and k = 0 or 1. Then 1. $Q^{**}(\sqrt{4n}) = Q'(\sqrt{n}) \setminus Q^{*}(\sqrt{n})$ and $Q^*(\sqrt{n}) \setminus Q^{**}(\sqrt{n}) = \{\frac{\alpha}{2} : \alpha = \frac{2\alpha + \sqrt{4n}}{2} \in Q^*(\sqrt{4n}) \setminus Q^{**}(\sqrt{4n})\}$ Proof: Let $\frac{a+\sqrt{4n}}{c} \in Q^*(\sqrt{4n}) = \{\frac{a+\sqrt{4n}}{c} \in Q^*(\sqrt{4n}) \text{ and } 2 \mid c\}$ $\frac{a^2 - 4n}{c}$ and $\frac{c}{2}$ are both integers and . Then $(a, \frac{a^2 - 4n}{c}, c) = 1$. As c and 4n are both even, so a 2r' c = 2c' Then must be even. Let a = 2a', c = 2c'. Then $\frac{a^2 - 4n}{c} = 2(\frac{a'^2 - n}{c'})$ must be odd as otherwise $(a, \frac{a^2 - 4n}{c}, c) \neq$ 1. So c' = 2c''. This shows that $\frac{(a')^2 - n}{c''}$ is an integer, while $\frac{(a')^2 - n}{c'}$ is not an $a^{2} - 4n$

integer for otherwise C is not odd, a contradiction. Also

$$(a, \frac{a^2 - 4n}{c}, c) = 1 \Leftrightarrow (a', \frac{(a')^2 - n}{c''}, c'') = 1$$
. Therefore

$$\frac{a+\sqrt{4n}}{c} = \frac{a'+\sqrt{n}}{c'} = \frac{a'+\sqrt{n}}{c''}$$
 belongs to $\mathcal{Q}^*(\sqrt{n})$.
$$a+\sqrt{4n}$$

Thus c belongs to $Q'(\sqrt{n}) \setminus Q^*(\sqrt{n})$.

$$\frac{a+\sqrt{n}}{2c} \in Q^{"}(\sqrt{n}) \setminus Q^{*}(\sqrt{n})$$
. Then, by

Conversely let 2c

Lemma 2.1,
$$\frac{a+\sqrt{n}}{2c} \in Q^*(\sqrt{n}) \qquad \qquad \frac{a^2-n}{c}$$
is
$$\frac{a+\sqrt{n}}{2c} = \frac{2a+\sqrt{4n}}{c}$$

odd and hence 2c 4c belongs to $a + \sqrt{n}$

$$Q^{*}(\sqrt{4n}) \quad \text{Obviously} \quad 2c \quad \text{belongs to} \\ Q^{**}(\sqrt{4n}) \quad \text{This completes the first part of Lemma 3.6.} \\ 2. \quad We \quad now \quad \text{prove that} \\ \{\frac{\alpha}{2} : \alpha = \frac{2a + \sqrt{4n}}{c} \in Q^{*}(\sqrt{4n}) \setminus Q^{**}(\sqrt{4n})\} = Q^{*}(\sqrt{n}) \\ \frac{2a + \sqrt{4n}}{c} \in Q^{*}(\sqrt{n}) \setminus Q^{**}(\sqrt{n}) \\ \text{For this, let} \quad C \quad \text{Then} \end{cases}$$

. For this, let C . Then $4a^2 - 4n$

$$c is an integer and (2a, \frac{4a^2 - 4n}{c}, c) = 1 \Leftrightarrow (a, \frac{a^2 - n}{c}, c)$$

This implies that $\frac{2a + \sqrt{4n}}{2c} = \frac{a + \sqrt{n}}{c} \in Q^*(\sqrt{n}) \setminus Q^{**}(\sqrt{n})$

Conversely, suppose that

$$\frac{a+\sqrt{n}}{c} \in Q^*(\sqrt{n}) \setminus Q^{**}(\sqrt{n})$$
. Then clearly ^C is odd
$$a^2 - n$$

and

$$(a, ----, c) = 1$$

$$(a, \frac{a^2 - n}{c}, c) = 1 \Leftrightarrow (2a, \frac{4a^2 - 4n}{c}, c) = 1$$

Thus

$$\frac{a+\sqrt{n}}{c} = \frac{2a+\sqrt{4n}}{2c} = \frac{1}{2}\left(\frac{2a+\sqrt{4n}}{c}\right), \quad \text{where}$$

$$\frac{2a + \sqrt{4n}}{c} \in Q^*(\sqrt{n}) \setminus Q^{**}(\sqrt{4n})$$
. This completes

the proof. W

The following lemma is an extension of Lemma 3.6 for all $n \equiv 0 \pmod{4}$ and its proof is analogous to the proof of above lemma.

Lemma 3.7 Let $n \equiv 0 \pmod{4}$. Then 1. $\left(Q^*(\sqrt{\frac{n}{4}}) \setminus Q^{**}(\sqrt{\frac{n}{4}})\right) \cup Q^{**}(\sqrt{4n}) = Q^{''}(\sqrt{n}) \setminus Q^*(\sqrt{n})$ and 2.

$$Q^*(\sqrt{n}) \setminus Q^{**}(\sqrt{n}) = \{\frac{\alpha}{2} : \alpha = \frac{2a + \sqrt{4n}}{c} \in Q^*(\sqrt{4n}) \setminus Q^{**}(\sqrt{4n})\}$$

Theorem3.8 Let $n \equiv 1, 2 \text{ or } 3 \pmod{4}$. Then $Q^{**}(\sqrt{4n}) \cup \{\frac{\alpha}{2} : \alpha = \frac{2a + \sqrt{4n}}{c} \in Q^{*}(\sqrt{4n}) \setminus Q^{**}(\sqrt{4n})\}$ is an H-subset of $Q^{''}(\sqrt{n})$.

Proof: By Lemma 3.6,

$$\begin{array}{l} & Poof: \\ & Q^{**}(\sqrt{n} 4 n) = Q^{''}(\sqrt{n}) \setminus Q^{*}(\sqrt{n}) \\ & Q^$$

$$\vec{Q}(\sqrt{n}) \setminus \vec{Q}^*(\sqrt{n}) = \vec{Q}^*(\sqrt{4n}) \cup \{\frac{\alpha}{2} : \alpha = \frac{2a + \sqrt{4n}}{c} \in \vec{Q}^*(\sqrt{4n}) \setminus \vec{Q}^*(\sqrt{4n})\}$$

is an *H*-subset of $Q^{"}(\sqrt{n})$ if and only if = $1_{n} \neq 0 \pmod{4}$. Also since $Q^{*}(\sqrt{n})$ is not *H*-subset so $Q^{*}(\sqrt{n}) \setminus Q^{**}(\sqrt{n})$ and $Q^{'}(\sqrt{n}) \setminus Q^{*}(\sqrt{n})$ are not *H*-subsets of $Q^{''}(\sqrt{n})$. By Theorems 2.2, 2.3 we know that $Q^{''}(\sqrt{n}) \setminus Q^{*}(\sqrt{n})$ is an *H*-subset of $Q^{''}(\sqrt{n})$. Thus $Q^{*}(\sqrt{n}) \leftarrow \frac{\alpha}{2} : \alpha = \frac{2a + \sqrt{4n}}{c} \in Q^{*}(\sqrt{4n}) \setminus Q^{*}(\sqrt{4n})$ } is an *H*-subset of $Q^{''}(\sqrt{n})$. W

The following remark is an immediate consequence of Lemma 3.6 and Theorem 3.8.

Remark 3.9 Let
$$n \neq 0 \pmod{4}$$
. Then
 $Q''(\sqrt{n}) = Q^{**}(\sqrt{n}) \cup Q^{**}(\sqrt{4n})$, where
 $Q^{**}(\sqrt{4n}) = (Q^{*}(\sqrt{n}) \setminus Q^{**}(\sqrt{n})) \cup Q^{**}(\sqrt{4n})$.

The following theorem is an extension of Theorem 3.8 for all $n \equiv 0 \pmod{4}$ whose proof is analogous to the proof of above Theorem.

Also

α

Theorem 3.10 Let $n \equiv 0 \pmod{4}$. Then $Q^{**}(\sqrt{4n}) \cup \{\frac{\alpha}{2} : \alpha = \frac{2a + \sqrt{4n}}{c} \in Q^{*}(\sqrt{4n}) \setminus Q^{**}(\sqrt{4n})\}$ is an H-subset of $Q'(\sqrt{n})$. W $n \equiv 0 \pmod{4}$ Theorem 3.11 Let and $\alpha(a,b,c) \in Q^*(\sqrt{n})$. Then: 1. If a is odd then $\overline{2}$ belongs to $Q^{**}(\sqrt{4n})$ 2. If a is even then $\overline{2}$ belongs to $Q^*(\sqrt{\frac{n}{4}}) \setminus Q^{**}(\sqrt{\frac{n}{4}})$ or $Q^{**}(\sqrt{4n})$ $\alpha \in Q^*(\sqrt{n}) \setminus Q^{**}(\sqrt{n}) \text{ or } \alpha \in Q^{**}(\sqrt{n})$ $n \equiv 0 (mod \ 4)$ Proof: Let Let $\alpha = \frac{a + \sqrt{n}}{2} \in Q^*(\sqrt{n})$. Then we have the following 1. If a is odd then $(a^2 - n)$ is odd. So b cannot be

even. Therefore, by second part of Lemma 2.1, $\overline{2}$ belongs to $Q^{**}(\sqrt{4n})$.

2. If *a* is even then $(a^2 - n) \equiv 0 \pmod{4}$. So *b*, *c* cannot be both even, as otherwise $(a,b,c) \neq 1$. Thus exactly one of *b*, *c* is even. Therefore, again by second α

part of Lemma 2.1, if b is odd then $\overline{2}$ belongs to $Q^{**}(\sqrt{4n})$. If b is even then, from the proof of Lemma

3.6(2),
$$\frac{\alpha}{2}$$
 belongs to $Q^*(\sqrt{\frac{n}{4}}) \setminus Q^{**}(\sqrt{\frac{n}{4}})$. That is,
 α

$$\frac{1}{2} \quad \text{belongs to} \quad \begin{array}{l} \mathcal{Q}(\sqrt{4}) \setminus \mathcal{Q}(\sqrt{4}) \quad \text{or} \quad \mathcal{Q}^{**}(\sqrt{4}n) \\ \text{according as} \quad \alpha \in \mathcal{Q}^{*}(\sqrt{n}) \setminus \mathcal{Q}^{**}(\sqrt{n}) \\ \alpha \in \mathcal{Q}^{**}(\sqrt{n}) \quad W \end{array}$$

The following example illustrates the above theorem.

Example 3.12 Let
$$n = 8$$
. Then
 $\alpha = \frac{1 + \sqrt{8}}{1} \in Q^*(\sqrt{8})$ but $\frac{\alpha}{2} = \frac{1 + \sqrt{8}}{2} = \frac{2 + \sqrt{32}}{4} \in Q^{**}(\sqrt{32})$.

Also $\beta = \frac{2+\sqrt{8}}{1} \in Q^*(\sqrt{8}) \quad \frac{\beta}{2} = \frac{1+\sqrt{2}}{1} \in Q^*(\sqrt{2}) \setminus Q^{**}(\sqrt{2}).$ Similarly $\gamma = \frac{2+\sqrt{8}}{4} \in Q^{**}(\sqrt{8}) \quad \text{whereas} \quad \frac{\gamma}{2} = \frac{4+\sqrt{32}}{16} \in Q^*(\sqrt{32}).$ By summarizing the above results we have the following **Theorem 3.13** Let $n \equiv 0 (m \circ d \ 4).$ Then $Q^{''}(\sqrt{n}) = Q^{*:}(\sqrt{n}) \cup Q^{*:}(\sqrt{4n}), \quad \text{where}$ $Q^{*:}(\sqrt{4n}) = \left(Q^*(\sqrt{n}) \setminus Q^{**}(\sqrt{n})\right) \cup Q^{**}(\sqrt{4n})$ $Q^{*:}(\sqrt{n}) = (Q^*(\sqrt{\frac{n}{4}}) \setminus Q^{**}(\sqrt{\frac{n}{4}})) \cup Q^{**}(\sqrt{n})$ and Proof: Follows from Lemma 3.7 and Theorem 3.10. W

We conclude this paper with the following examples for illustration of Remark 3.9 and Theorem 3.13. For n = 2, 4n = 8, $Q^{*:} (\sqrt{8}) = (\sqrt{2})^H \cup (-\sqrt{2})^H$, $Q^{*:} (\sqrt{32}) = (\sqrt{8})^H \cup (-\sqrt{8})^H$. So $Q''(\sqrt{8})$ has exactly 4 orbits under the action of H. Also if n = 3, 4n = 12, $Q^{*:} (\sqrt{12}) = (\sqrt{3})^H \cup (-\sqrt{3})^H$, $Q^{*:} (\sqrt{48}) = (\sqrt{12})^H \cup (-\sqrt{12})^H$. So $Q''(\sqrt{12})$ has exactly 4 orbits under the action of H. Similarly if n = 5, 4n = 20, $Q^{*:} (\sqrt{20}) = (\sqrt{5})^H \cup (-\sqrt{5})^H$, $Q^{*:} (\sqrt{80}) = (\sqrt{20})^H \cup (-\sqrt{20})^H$. So $Q''(\sqrt{20})$

has exactly 4 orbits under the action of H.

REFERENCES

- Malik M. A., S. M. Husnine, and A. Majeed. Properties of Real Quadratic Irrational Numbers under the action of group $H = \langle x, y : x^2 = y^4 = 1 \rangle$. Studia Scientiarum Mathematicarum Hungarica, **42** (4): 371-386 (2005).
- Malik M. A., S. M. Husnine and A. Majeed. Intrasitive Action of the Modular Group PSL(2,Z) on a subset $Q^*(\sqrt{k^2m})$ of $Q(\sqrt{m})$. PUJM, 37: 31-38 (2005).
- Aslam. M., Q Mushtaq. Action of $\langle y, t : y^4 = t^4 = 1 \rangle$ on $Q(\sqrt{n})$, Southeast Asian Bulletin of Mathematics **31** (6): 1049-1056 (2007).
- Malik M. A., M. Asim Zafar. Real Quadratic Irrational Numbers and Modular Group Action, Southeast Asian Bulletin of Mathematics **35** (3): 439-445 (2011).

Malik M. A., M. Asim Zafar. G -subsets of an invariant subset $Q^*(\sqrt{k^2m})$ of $Q(\sqrt{m}) \setminus Q$ under the

Modular Group Action (submitted for publication).

- Mushtaq Q. Modular Group acting on Real Quadratic Fields. Bull. Austral. Math. Soc. **3** (7): 303-309 (1988).
- Mushtaq Q., M. Aslam. Group Generated by two elements of orders 2 and 4 acting on real quadratic fields, Acta Mathematica Sinica, New Series, **9** (1): 48-54 (1993).
- Mushtaq Q., M. Aslam. Transitive Action of a Two Generator group on rational Projective Line, Southeast Asian Bulletin of Mathematics 1: 203-207 (1997).

Husnine S. M., M. Aslam Malik, and A. Majeed. On Ambiguous Numbers of an invariant subset

 $Q^*(\sqrt{k^2m})$ of $Q(\sqrt{m})$ under the action of the Modular Group PSL(2,Z). Studia Scientiarum Mathematicarum Hungarica **42**(4): 401-412 (2005).