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ABSTRACT: In this study a vibration analysis was performed of an isotropic cylindrical shell 
submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported 
boundary condition. Love’s thin shell theory was exploited for strain- and curvature- displacement 
relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and 
Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged 
isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. 
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INTRODUCTION 

 Vibrations of cylindrical shells are the most 
widely studied area of research because of their simple 
geometrical shapes. First proper shell theory was 
proposed by (Love, 1888).  (Loy and Lam, 1997) studied 
the vibration of thin cylindrical shell with ring supports. 
The study was carried out using Sander's shell theory. 
The governing equations were obtained using energy 
functional with the Ritz method. (Iqbal et al., 2009) 
applied wave propagation approach to analyze vibrations 
of functionally graded material circular cylindrical shells. 
(Arshad et al., 2010) studied vibration of bi-layered 
cylindrical shells with layers of different materials. 
Frequencies were evaluated for long, short, thick and thin 
cylindrical shells by varying non-dimensional 
geometrical parameters, length-to-radius and thickness-
to- radius ratios for a simply supported boundary 
condition. (Arshad et al., 2011) also investigated 
vibration analysis of bi-layered functionally graded 
cylindrical shells. In this case, both layers are composed 
of functionally graded materials and the thickness of shell 
layers is considered to be equal and constant.  (Shah  et 
al., 2010 ) have studied vibrations of functionally graded 
cylindrical shells based on elastic foundations. They 
amended the equations of functionally graded cylindrical 
shells by inducting the modulii of the Winkler and 
Pasternak foundations. (Shah et al., 2010 ) also presented 
vibration characteristics of cylindrical shells which was 
filled with fluid and was put on the elastic foundations. 
(Naeem et al., 2010) studied the vibration frequency 
characteristics of functionally graded cylindrical shells 
using the generalized differential Quadrature method. 
(Shah et al., 2013) calculated natural frequencies of 

three-layered functionally graded cylindrical shells with 
middle layer consisting of isotropic material resting on 
Winkler and Pasternak elastic foundations. (Shah et al., 
2013) investigated vibration characteristics of tri-layered 
cylindrical shells with functionally graded material 
middle layer based on elastic foundations for various 
boundary conditions.       
 The present study is concerned with analysis of 
the vibration characteristics of submerged cylindrical 
shells based on Winkler and Pasternak elastic 
foundations. Love’s thin shell theory has been utilized for 
strain and curvature displacement relationship. The wave 
propagation method is used to formulate the shell eigen-
frequency equation. Powerful mathematical tool 
MATLAB has been utilized to extract natural frequencies 
and mode shapes of the cylindrical shell for certain 
material as well as physical parameters. 

Theoretical formulation: A cylindrical shell of the thin-
wall was considered here as shown in Fig.1, with the 
geometrical parameters: length L, thickness h and mean 

radius R. The orthogonal coordinate system  

was taken to be at the surface of the shell where x,  and 
z represent the axial, circumferential and radial 
coordinates respectively. Young’s modulus E, the 
Poisson ratio ν and the mass density ρ were the shell 
material parameters. The axial, circumferential and radial 

displacement deformations were denoted by u , 

v  and w  respectively with regard to the 
shell middle surface. 
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Fig. 1 Cylindrical shell on elastic foundation 

 
 The equations of motion for cylindrical shell 
from the Love shell theory were given in the form as:  

                                   +    =                                                
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where  ,  ,   were force resultant and  , 

 ,  were moment resultants. Which are given 
as: 
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Where  ,  and  are the reference surface strains 

and ,  and  are the surface curvature and   , 

 and  stand for extensional, 
coupling and bending stiffness respectively and defined 
as: 
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 denotes the mass density per unit length and is 
defined as: 
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 The analysis was carried out using Love’s first 
order thin shell theory and the relationships for strain-
displacement and curvature-displacement were provided 
from this theory and given for a cylindrical shell as: 

 
=                      
(7) 
and  

 

=                 
(8) 
 These expressions for the surface strains ,  

and  and the curvatures ,  and  from the 
relations (7) and (8) respectively, are substituted into Eq. 

(4) and the resulting expressions for  ,  , , 

 ,  ,  into equations (1)-(3), and introducing 
the submerged cylindrical shell, which satisfied the 
acoustic wave equation and the terms describing the 

Winkler and Pasternak foundations ( ) in 
the z-direction, the equations of motion for a cylindrical 
shell could be written in a differential operator form as: 

                                                    
(9) 

                                                    
(10) 
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 +P+
                                 (11) 

where   state the differential operators 

with regard to x and  and are given as 

’ 

, 

, 

, 

, 

, 

’ 

, 

,                (12)               
 where G  stands for Pasternak elastic foundation 
and K for the Winkler foundation modulus.  The 

expression for the differential operator  is: 

    
      (13) 
The fluid exterior of cylindrical shell satisfies the 
acoustic wave equation which is given in cylindrical co-

ordinate system  as: 

                                         

(r )+ + =                          (14)  
Where P was the acoustic pressure and c was the sound 
speed of the fluid and t is the time. 
 
Numerical procedure 
The following modal displacement shape functions were 
adopted to separate the time and space variables 

u  
   

 v  
   

 w  
       (15)   

in the longitudinal, circumferential and transverse 
directions respectively. The constants A, B and C are the 

amplitudes of vibrations in the x,  and z directions 
respectively, n is the number of circumferential waves 

and stands for axial wave number that is associated 
with a boundary conditions. Wave numbers for four types 
of boundary conditions are given in Table 1: 
 
Table 1  Showing wave Numbers for Different 

Boundry Conditions 
 
Boundary conditions Wave numbers 
Simply supported - simply supported 

Clamped – clamped 

Clamped - simply supported 

Clamped – free 

These axial wave numbers  were selected to satisfy 
boundary conditions at both edges of a cylindrical shell. 

  denotes the natural angular frequency for the 
cylindrical shell. 
The associated form of the acoustic pressure field exterior 
of the shell, which satisfied the acoustic wave Eq. (14) is 
given as: 

                                      P=  cos(n ) 

( r)                                             
(16) 

where    was the pressure amplitude, ( ) was 
the second kind Hankel function of order n. The radial 

wave number  and axial wave number  are related 

by a usual vector relation              =  , 

where  = /c is the fluid acoustic wave number. In 
order to ensure that the acoustic fields satisfy the 

conditions, usually  =  is taken when 

   and       = -i   is chosen for   

  . 
To ensure that fluid remains in contact with shell wall, 
the fluid radial displacement must be equal to the shell 
radial displacement at the interface of the outer shell wall 
and the fluid. This coupling condition is: 

                               -  =                      
(17) 
which gives: 

                                 =  C                      
(18) 
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where    is the fluid density and (  ) 
denotes differentiation with respect to the argument  

.         
 Making substitution for the displacement functions u, v 
and w from the expression (15) in system of equations (9-
11) and simplifying the algebraic expression and 
rearranging the terms, the frequency equation is written 
in the following eigenvalue form:          
               

                     
(19)                                                           

where  
( , , , )ijC i j  1 2 3

 are coefficients of stiffness 
matrix and their values are given below: 
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Equation (20) is solved for shell frequencies and mode 
shapes using computer software MATLAB. The three 
frequencies were obtained corresponding to the axial, 
circumferential and radial displacements. 

RESULTS AND DISCUSSION 

 To show the validity and accuracy of the present 
approach, results were compared with the existing results 
of the literature. In this regard, a comparison of the 
variation of the natural frequencies (Hz) of the isotropic 

cylindrical shell with simply supported-simply supported 
end condition was taken in Table 2, against axial half 
wave number m, for the shell parameters L= 8 in, R=2 in, 

h=0.1 in, E= 30  lbf , =0.3, 

=7.35  lbf  with the results of 
(Warburton et al., 1961). Table 3 showed comparisons of 
the values of natural frequencies (Hz) of an isotropic 
cylindrical shell with those results evaluated by 
(Goncalves et al. 2006) with simply supported - simply 
supported boundary conditions. The comparisons were 
carried out for the parameters: L = 0.41m, R=0.3015 m, 

h=0.001m, E= 2.1  N/m², =0.3, =7850 
kg/m3for the axial mode m=1. It was seen from the two 
sets of results that the present frequencies were a little bit 
lower than those evaluated by Goncalves et al. This 
difference was because of the two different approaches 
used in above reference and the present study. Table 4 
shows the comparison of the variation of frequency 
parameter of isotropic cylindrical shells with 
circumferential wave number n  to that of (Li. 2008) for 
simply-supported end condition having shell parameters 
(m = 1, L/R = 20, h/R=0.05). In table 5, a comparison of 
the coupled natural frequencies (Hz) has been taken of a 
clamped-clamped isotropic cylindrical shell for different 
pattern of mode shapes (m, n) with the evaluated results 
of Finite element method / Boundary element method and 
(SYSNOISE, 1998) for shell geometrical parameters 
L=20,R=1, h=0.01.  In Table 6 a comparison has been 
made of the dimensionless frequency parameter Ω for an 
isotropic cylindrical shell resting on Winkler foundation 

having shell parameters h/R=0.01, L/R=2, K= N/m3 
with the already evaluated results of the (Sofiyev et al. 
2010) for simply supported-simply supported boundary 
conditions. 
 These Tables 2-6, show a good agreement of the 
results obtained from the present approach and the other 
numerical techniques for the solution of the shell 
problem.  
 
Table 2 Showing comparison of natural frequency 

(Hz) for an isotropic cylindrical shell with 
simply supported-simply supported end 
condition with shell parameters L= 8 in, R=2 

in, h=0.1 in, E= 30  lbf  , =0.3, 

=7.35  lbf   
 

m Warburton (1961) Present 
1 2199.3 2194.4 
2 4041.9 4031.1 
3 6620.0 6605.9 
4 9124.0 9108.4 
5 11357.0 11343.4 
6 13384.0 13374.9 
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Table 3 Showing comparison of natural frequencies 

(Hz) for an isotropic cylindrical shell ( L = 

0.41m, R=0.3015 m, h=0.001m, E= 2.1  

N/m², =0.3, =7850 kg/m3 

 
 n   Goncalves al. 

et (2006) 
Present Difference 

% 
7  303.35 301.93 0.47 
8  280.94 278.99 0.69 
9  288.71 286.37 0.81 
10  318.40 315.83 0.81 
11  363.33 360.64 0.74 
12  419.19 416.44 0.66 
13  483.51 480.74 0.57 
14  554.97 552.22 0.50 
 
Table 4: Showing comparison of frequency 

parameters Ω =ωR√[(1 − ν2)ρ/E] for an 
isotropic cylindrical shell with simply 
supported boundary condition (m = 1, L/R = 
20, h/R=0.05). 

 
n Li (2008) Present 

   0 0.09295 0.092968 
1 0.01610 0.016102 
2 0.03930 0.039271 
3 0.109824 0.109811 
4 0.210284 0.210277 

 
 
Table 5  Showing comparison of coupled natural 

frequencies (Hz) of a clamped-clamped 
cylindrical shell submerged in water by 
FEM/BEM, SYSNOISE with the natural 
frequencies of present method  ( L=20,R=1, 
h=0.01) 

 

n 
FEM/BEM 

(1998) 
SYSNOISE    

(1998) 
Present 

Modal 
Shape 
(m, n) 

1 4.92 5.00 4.95 (1, 2) 
2 9.06 9.62 8.93 (1, 3) 
3 10.71 11.22 10.61 (2, 3) 
4 11.24 11.39 11.67 (2, 2) 
5 14.70 15.18 14.57 (3, 3) 
6 18.68 20.58 18.25 (1, 4) 
7 19.14 20.96 18.70 (2, 4) 
8 20.37 22.10 19.90 (3, 4) 

 

Table 6: Showing comparison of the dimensionless 
frequency parameter Ω for a cylindrical shell 
resting on Winkler elastic foundation 

(h/R=0.01, L/R=2, K= N/m3) for simply 
supported-simply supported boundary 
conditions. 

 
n Sofiyev et al. (2010) Present 
1 0.6792 0.6812 
2 0.3646 0.3661 
3 0.2080 0.2090 
4 0.1342 0.1351 

 
 

In Fig. 2, variation of natural frequencies (Hz) of an 
isotropic empty cylindrical shell have been compared 
before and after submerged against circumferential wave 
number n, for simply supported-simply supported end 
condition on elastic foundations and geometrical and 
material parameters as given in the caption of this figure. 

 
Fig. 2 Comparison of the variation of natural 

frequencies (Hz) of empty and submerge 
isotropic cylindrical shells against 
circumferential wave number n, for simply 
supported-simply supported end condition 
having shell parameters (m=1, L=0.41, 

R=0.3015, h=0.001, E=2.1 N/ ,ν=0.3, 

=7850kg/ ,G=0,K=1.5 ) 
 
 It was noticed that the natural frequencies (Hz) 
of both kind of cylindrical shells behave alike, i.e. it first 
decrease up to circumferential wave number n = 8, and 
then it increased with the increasing values of n. The 
difference of the natural frequencies (Hz) of both kinds of 
cylindrical shells decrease up to n=8 and for n > 8, this 
difference again start to increase. This concluded that the 
natural frequencies of the shells decreased significantly 
up to nearly three times, when it was submerged in fluid. 
In Fig. 3, a comparison of the variation of natural 
frequencies (Hz) of an empty isotropic cylindrical shell 
before submerged has been taken against circumferential 
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wave number n, for different values of Winkler 

foundation K==1.5 , 2.5  and Pasternak G = 
0, having shell parameters given in its caption. It was 
observed by changing Winkler foundation K, the natural 
frequencies (Hz) of both kinds of shells behave alike, i.e. 
it first decrease up to circumferential wave number n = 8, 
and for higher value of circumferential wave number n > 
8, both kinds of frequencies initiate to increase. For lower 
and higher values of circumferential wave number n, both 
types of frequencies seem to converge. Difference 
between both types of natural frequencies was not 
considerable. Rate of decrement was faster than rate of 
increment of both kinds of the natural frequencies. 
 

e 
Fig. 3 Comparison of the variation of natural 

frequencies (Hz) of empty isotropic 
cylindrical shells against circumferential 
wave number n, for different values of 
Winkler foundation for simply supported-
simply supported end condition (m=1, L=0.41, 

R=0.3015, h=0.001, E=2.1 N/ ,ν=0.3, 

=7850kg/ ,G=0) 

 In Fig. 4, a variation of natural frequencies (Hz) 
of an empty isotropic cylindrical shell after submersion 
has been taken against circumferential wave number n, 

for different values of Winkler foundation K=1.5 , 

2.5  and Pasternak foundation G = 0, having shell 
parameters given in its caption. It was seen that by 
changing Winkler foundation K, the natural frequencies 
(Hz) of both kinds of shells behave alike, i.e. it first 
decrease up to circumferential wave number n = 8, and 
for higher value of circumferential wave number n > 8, 
both kinds of frequencies began to increase. For lower 
and higher values of circumferential wave number n, both 
types of frequencies seem to converge. Difference 
between both types of natural frequencies was not 
considerable. Moreover rate of decrement was slower 
than rate of increment of both kinds of the natural 
frequencies. Natural frequencies of both kinds of shells 
have moon type figure which was concave up and whose 
edges were sharp, thin and whose middle part was thick. 

 
Fig. 4 Comparison of the variation of natural 
frequencies (Hz) of submerged isotropic cylindrical 
shells against circumferential wave number n, for 
different values of Winkler foundation for simply 
supported-simply supported end condition (m=1, 

L=0.41, R=0.3015, h=0.001, E=2.1 N/ , ν=0.3, 

=7850kg/ ,G=0) 
 
In Fig. 5, a comparison of the variation of natural 
frequencies (Hz) of an empty isotropic cylindrical shell 
before submersion has been sketched against 
circumferential wave number n, for different values of 

Pasternak foundation G =1.5 , 2.5  and 
Winkler K = 0, having shell parameters given in its 
caption.  
 

 
 
Fig. 5 Comparison of the variation of natural 
frequencies (Hz) of empty isotropic cylindrical shells 
against circumferential wave number n, for different 
values of Pasternak foundation for simply supported-
simply supported end condition (m=1, L=0.41, 

R=0.3015, h=0.001, E=2.1 N/ , ν=0.3, 

=7850kg/ ,K=0) 

 It was observed by changing Winkler foundation 
K, the natural frequencies (Hz) of both kinds of shells 
behave alike, i.e. they increased with the circumferential 
wave number n for both kinds of cylindrical shells. For 
lower and higher values of circumferential wave number 
n, both types of frequencies seem to converge but for 
higher value if circumferential wave number n, they have 
diverging behaviour. Difference between both types of 
natural frequencies was substantial. Rate of increment of 
the frequencies for higher G was higher than that of lower 
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of values of G. Natural frequencies of both kinds of shells 
depart sharply for the increasing values of circumferential 
wave number n, 
Similar behaviour of the natural frequencies (Hz) has 
been observed for the empty cylindrical shells after 
submersion for different values of Pasternak foundation, 
shown in Fig. 6 but in this case natural frequencies of the 
shell were lower down remarkably as compared to the 
shell before submerged. For lower values of 
circumferential wave number n, both types of frequencies 
seem to converge. Slightly bending behaviour of the 
natural frequencies has been observed for both kinds of 
submerged shells. 
 

 
Fig. 6 Comparison of the variation of natural 

frequencies (Hz) of submerged isotropic 
cylindrical shells against circumferential 
wave number n, for different values of 
Pasternak foundation for simply supported-
simply supported end condition (m=1, L=0.41, 

R=0.3015, h=0.001, E=2.1 N/ , 

ν=0.3, =7850kg/ ,K=0) 
 
 In Fig. 7, a comparison of the variation of 
natural frequencies (Hz) of an empty isotropic cylindrical 
shell before submersion has been drawn against 
circumferential wave number n, for different values of 

Pasternak foundation G =1.5 , 2.5  along 

Winkler foundations K = 1 , 

1.5 respectively, having shell parameters given in 
its caption. It was observed by changing Pasternak G and 
Winkler foundations K, the natural frequencies (Hz) of 
both kinds of shells behave alike, i.e. they increased with 
the circumferential wave number n for both kinds of 
cylindrical shells. For lower values of circumferential 
wave number n, both types of frequencies appear to 
converge but for higher value if circumferential wave 
number n, they have diverging response. Difference 
between both types of natural frequencies was 
substantial. Rate of increment of the frequencies for 
higher G and K is higher than that of lower of values of G 
and K. Natural frequencies of both kinds of shells apart 
sharply for the increasing values of circumferential wave 
number n. 

 
Fig. 7 Comparison of the variation of natural 

frequencies (Hz) of empty isotropic 
cylindrical shells against circumferential 
wave number n, for different values of 
Pasternak and Winkler foundations for 
simply supported-simply supported end 
condition (m=1, L=0.41, R=0.3015, h=0.001, 

E=2.1 N/ , ν=0.3, =7850kg/ ) 
 
 Alike behaviour of the natural frequencies (Hz) 
have been observed for the empty cylindrical shells after 
submersion for different values of Pasternak and Winkler 
foundations, revealed in Fig. 8 but in this case natural 
frequencies of the shell was lower down remarkably as 
compared to the shell before submersion. For lower 
values of circumferential wave number n, both types of 
frequencies seem to converge but for higher values of 
circumferential wave number n they kept diverging 
approach. Faintly bending behaviour of the natural 
frequencies was observed for both kinds of submerged 
shells having different elastic foundations. 
 

 
Fig. 8 Comparison of the variation of natural 

frequencies (Hz) of submerged isotropic 
cylindrical shells against circumferential 
wave number n, for different values of 
Pasternak and Winkler foundations for 
simply supported-simply supported end 
condition (m=1, L=0.41, R=0.3015, h=0.001, 

E=2.1 N/ , ν=0.3, =7850kg/ ) 

Conclusion: In the present analysis natural frequencies 
of an isotropic cylindrical shell submerged in fluid for 
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different pattern of Winkler and Pasternak elastic 
foundations was carried out for simply supported 
boundary condition. Influence of the fluid in which an 
empty cylindrical shell was submerged was found to be 
significant, whereas Winkler and Pasternak elastic 
foundations also affect the natural frequencies of 
submerged isotropic cylindrical shells. Pasternak 
foundations influence more than that of Winkler 
foundations. This work could be extended to study 
vibration characteristics of fluid-filled cylindrical shell 
submerged in fluid on elastic foundations. MATLAB 
computer software has been used to obtain significant 
results for this study.  
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