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ABSTRACT: In this paper, the indirect panel method is used to compute the velocity distribution 

over the surface of a symmetric aerofoil for which the exact result is present. To check the accuracy of 

the method; the computed flow velocity is compared to the exact result for the flow over the surface of 

a symmetric aerofoil. 
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INTRODUCTION 

 The Indirect panel method is used to calculate 

flow past a symmetric aerofoil. This method depends on 

the distribution of singularities, such as sources or 

doublets, over the surface of the body and computes the 

unknowns in the form of singularity strengths. The 

equation of the indirect panel method can be derived 

using an approach based on Green‟s theorem. (Ramsay 

[1942], Lamb [1932], Milne-Thomson [1968], Shah 

[2008]) 

 The importance of the panel methods have been 

widely recognized during the last few decades. The panel 

methods are presented under different names such as 

“boundary element methods”, “surface singularity 

methods”, boundary integral solution methods”, or 

“boundary integral equations methods”. This method has 

been successfully applied in several fields, for examples, 

elasticity, potential theory, aerodynamics, elasto-statics 

and elasto-dynamics etc. (Brebbia [1978], Brebbia and 

Walker [1980], Hess and Simth [1967], Morino et al 

[1975], Luminita et al [2008], Mushtaq et al[ 2009], 

Mushtaq and Shah [2010a, 2010b,2012] , Mushtaq 

[2011], Muhammad [2011 ]) 

 Indirect panel methods are numerical techniques 

based on simplifying assumptions about the physics and 

characteristics of the ideal flow around a body. The 

assumptions of the problem are steady, irrotational, and 

ideal flow cause great simplifications to the general 

equations of aerodynamics. For an irrotational flow  

 
Where is the velocity of the fluid at any point of the flow 

field and is the total velocity potential. But equation of 

continuity for steady and ideal flow is 

 
From equations (1) and (2), we get 

.  

 This is Laplace‟s equation that is an extensively 

studied linear partial differential equation. 

 For solution of the problem of ideal flow around 

arbitrary body, Laplace‟s equation can be solved using 

the boundary condition that there is no flow can penetrate 

the boundary of the body. Also the flow away from the 

body should be uniform. 

 The solution of this linear partial differential 

equation can be expressed in terms of an integral around 

the surface of the body using the vector identity. This 

integral equationconsists of expressions leading to 

boundary distribution of singular solution of a Laplaces‟ 

equation. Thus, the linear expression of a singular 

solution to Laplaces‟ equation also leads to a solution of a 

differential equation. 

 The simple solution technique for panel methods 

consist of discretizing the boundary of the body with 

straight panels and choosing singularities to be 

distributed around the panels in a particular way, but with 

unknown singularity-strength parameters. As every 

singularity is a solution to Laplaces‟ equation, a linear 

expression of the singular solution also leads to a solution 

of a differential equation. The ideal flow boundary 

condition should be satisfied at a distinct number of 

points said to becollocation points. This method results in 

a system of linear algebraic equations which can be 

solved for the unknown singularity-strength parameters. 

Descriptions of the method differ depending on the 

singularities involved and other descriptions of problem 

formulation. Thus the final result is repeatedly a system 

of linear algebraic equations which can be solved for the 

unknown singularity-strength parameters. 

Flow Past a Symmetric Aerofoil: For an exterior ideal 

flow problem, Let the uniform stream with velocity in the 

+ve axis direction passes over a symmetric aerofoil 

as shown in the figure. 
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Exact Velocity: The modulus of the velocity distribution 

over the surface of a symmetric aerofoil  (Chow[1979], 

Mushtaq and Shah [2010a, 2010b], and Mushtaq [2011]) 

is 

V = U  

where 

 is the radius of the circular cylinder (C.C) and  is the 

constant of Joukowski transformation and   

 coordinate is the center of the 

circular cylinder. 

Thus, in rectangular coordinates, equation (3) becomes as  

 
Boundary Condition of Aerofoil: For an ideal fluid 

flow, the boundary condition is 

 

Where  is the outward drawn unit normal to the surface 

of the symmetric aerofoil. 

For an irrotational motion 

 

Where is the total velocity potential.  

Thus from equations (5) and (6),we have 

 
Which can also be written as 

 
But 

 
Differentiating equation (8), we have 

 
Thus from equations (7) and (9), we get 

 

 

Since given in Thomson [1968], Shah [2008], 

Muhammad [2011], Mushtaq et al [2009], Mushtaq and 

Shah [2010a,2010b,2012], Mushtaq [2011], the velocity 

potential of the uniform stream is 

 = - Ux                                        (11) 

Then 

 
Thus from equations (10) and (12), we get 

 

In general, the outward drawn unit normal  to any 

vector  

 
is given as 

 
Thus  

 
From equations (13) and (14), we get 

 

 (taking) (15) 

This is the boundary condition for the symmetrical 

aerofoil. 

Discritization of Indirect Panel Method Equation: For 

exterior ideal flow, two dimensional problems are 

computed by panel method. Thus the end points 

coordinates of the panels for the process of discritization 

of the surface of symmetric aerofoil are given as follows. 

The surface of the circular cylinder is divided into  S  

elements in the counter clockwise position by applying 

the formula (Mushtaq et al [2009], Mushtaq and Shah 

[2010a, 2010b], Mushtaq [2011], and Muhammad[ 

2011]). 

 
Then the end points of these  S  panels of circular 

cylinder are 

 
 Thus by applying Joukowski‟s transformation, 

the end points of the symmetric aerofoil are given as 

 

Hence if  and  then from 

equation (18), we get 
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Equating real and imaginary parts, we have 

 

Matrix Formulation: The value of  is supposed to be 

constant on every panel in the case of constant panel 

approach. This will be equal to the values at the mid-node 

of the panel. Thus, in this case, the number of nodes will 

be equivalent to the number of panels „S‟. On every panel 

the variable is identified as a boundary condition. But is 

constant on every panel, it can be taken out of the 

integral. This gives 

 
Equation (20) applies for a particular node „i‟ and the 

integrals  relate the node „i‟ with the 

panel „j‟ over which integrals are evaluated. These 

integrals will be denoted by Hence equation (20) can be 

written as 

 
The integral  in equation (21) are difficult to evaluate 

analytically and are usually evaluated numerically using a 

4-point Gauss Quadrature rule. The integrals over the 

panels will be calculated numerically. 

Let 

 
Equation (21) can be rewritten as  

 
The whole set of equations can be expressed in matrix 

form as  

 
 Where is matrix of influence coefficient, is a 

vector of unknown total potentials and on the R.H.S is a 

known vector whose panels are the negative of the values 

of the velocity potentials of the uniform stream at the 

nodes on the region of the body. 

 Assuming that the value of is given as a 

boundary condition on each panel of the region, then 

equation (23) has a set of „S‟ unknowns. Equation (23) 

can be recorded in such a way that all the unknowns are 

on the L.H.S and can be then written as 

 
 Where is a vector of the unknown values of and 

is the coefficient matrix. The above equation represents a 

set of „S‟ simultaneous linear equations in „S‟ unknowns 

and can be solved by standard methods(Gauss 

Elimination Method, Gauss-Seidal Method) to give the 

values on the region. The values of  at any point can be 

calculated from the equation (24) where boundary of the 

region is discretized into panels. 

Exterior Flow Problems: For two-dimensional 

problems, the equation of indirect panel method in the 

case of a doublet distribution alone for exterior flow 

problems can be written as  

 
 For exterior flow problems, proceeding as in 

equation (21) and (25) for the indirect panel method can 

be expressed as  

 
or 

 
When all nodes are taken into consideration, 

equation (3.26) produces a  system of 

equations which can put in the matrix form in case of 

constant panel as  

 
 Where is matrix of influence coefficient, is a 

vector of unknown total potentials and on the R.H.S is a 

known vector whose panels are the negative of the values 

of the velocity potentials of the uniform stream at the 

nodes on the region of the body. Note that in equation 

(27) has unknowns .To solve 

specially this system of equations, the value of  at some 

position must be specified. For simplification is chosen as 

zero. This  system reduces to an system of 

equations which can be solved as before but now the 

diagonal coefficients of  will be found by the formula 

 
The velocity in the middle of two nodes on the boundary, 

can then be estimated by using the formula 

 
 The calculated velocity distributions are 

compared with analytical solutions for the symmetric 

aerofoil using Fortran programming. 

 The following tables (1) to (4) and graphs (1) to 

(4) show the comparison of the computed velocities with 

exact velocity over the surface of a symmetric aerofoil 

for 8,16,32,and 64 panels using constant panel variation. 
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Table (1): Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 8 constant panels. 

 

ELEMENT X Y R VELOCITY EXACT VELOCITY 

1 -1.68 .33 1.72 .83222E+00 .96125E+00 

2 -1.22 .78 1.45 .20056E+01 .19969E+01 

3 -.57 .77 .96 .19847E+01 .16958E+01 

4 -.10 .32 .33 .81904E+00 .55641E+00 

5 -.10 -.32 .33 .81904E+00 .55641E+00 

6 -.57 -.77 .96 .19847E+01 .16958E+01 

7 -1.22 -.78 1.45 .20056E+01 .19969E+01 

8 -1.68 -.33 1.72 .83221E+00 .96125E+00 

 

 
Figure 2: Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 8 constant panels. 

Table (2): Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 16 constant panels. 

 

ELEMENT X Y R VELOCITY EXACT VELOCITY 

1 -1.84 .19 1.85 .39927E+00 .53942E+00 

2 -1.70 .53 1.78 .11366E+01 .13424E+01 

3 -1.43 .80 1.64 .16997E+01 .18696E+01 

4 -1.08 .94 1.43 .20016E+01 .20347E+01 

5 -.71 .93 1.17 .19946E+01 .18738E+01 

6 -.36 .79 .86 .16752E+01 .14667E+01 

7 -.09 .51 .52 .10740E+01 .88980E+00 

8 .07 .17 .18 .40364E+00 .27208E+00 

9 .07 -.17 .18 .40364E+00 .27208E+00 

10 -.09 -.51 .52 .10740E+01 .88980E+00 

11 -.36 -.79 .86 .16752E+01 .14667E+01 

12 -.71 -.93 1.17 .19946E+01 .18738E+01 

13 -1.08 -.94 1.43 .20016E+01 .20347E+01 

14 -1.43 -.80 1.64 .16997E+01 .18696E+01 

15 -1.70 -.53 1.78 .11366E+01 .13424E+01 

16 -1.84 -.19 1.85 .39927E+00 .53942E+00 
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Figure 3: Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 16 constant panels. 

 

Table (3): Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 32 constant panels. 

 

ELEMENT X Y R VELOCITY EXACT VELOCITY 

1 -1.88 .10 1.88 .19768E+00 .34475E+00 

2 -1.84 .29 1.87 .58534E+00 .75183E+00 

3 -1.77 .47 1.83 .95041E+00 .11596E+01 

4 -1.66 .63 1.78 .12787E+01 .15066E+01 

5 -1.52 .76 1.70 .15574E+01 .17713E+01 

6 -1.36 .87 1.62 .17758E+01 .19448E+01 

7 -1.18 .94 1.51 .19254E+01 .20266E+01 

8 -.99 .98 1.39 .20000E+01 .20222E+01 

9 -.80 .98 1.26 .19967E+01 .19404E+01 

10 -.61 .94 1.12 .19152E+01 .17918E+01 

11 -.43 .86 .96 .17580E+01 .15870E+01 

12 -.27 .75 .80 .15304E+01 .13359E+01 

13 -.13 .61 .62 .12394E+01 .10467E+01 

14 -.02 .44 .44 .89375E+00 .72575E+00 

15 .08 .25 .26 .51262E+00 .39000E+00 

16 .14 .07 .16 .26472E+00 .41172E+00 

17 .14 -.07 .16 .26472E+00 .41172E+00 

18 .08 -.25 .26 .51263E+00 .39000E+00 

19 -.02 -.44 .44 .89375E+00 .72575E+00 

20 -.13 -.61 .62 .12394E+01 .10467E+01 

21 -.27 -.75 .80 .15304E+01 .13359E+01 

22 -.43 -.86 .96 .17580E+01 .15870E+01 

23 -.61 -.94 1.12 .19152E+01 .17918E+01 

24 -.80 -.98 1.26 .19967E+01 .19404E+01 

25 -.99 -.98 1.39 .20000E+01 .20222E+01 

26 -1.18 -.94 1.51 .19254E+01 .20266E+01 

27 -1.36 -.87 1.62 .17758E+01 .19448E+01 

28 -1.52 -.76 1.70 .15574E+01 .17713E+01 

29 -1.66 -.63 1.78 .12787E+01 .15066E+01 

30 -1.77 -.47 1.83 .95041E+00 .11596E+01 

31 -1.84 -.29 1.87 .58535E+00 .75183E+00 

32 -1.88 -.10 1.88 .19767E+00 .34475E+00 
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Figure 4: Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 32 constant panels. 

 

Table (4): Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 64 constant panels. 

 

ELEMENT X Y R VELOCITY EXACT 

VELOCITY 

1 -1.89 .05 1.89 .98563E-01 .27370E+00 

2 -1.88 .15 1.89 .29483E+00 .43735E+00 

3 -1.86 .24 1.88 .48816E+00 .64522E+00 

4 -1.84 .33 1.87 .67685E+00 .85754E+00 

5 -1.80 .43 1.85 .85888E+00 .10622E+01 

6 -1.75 .51 1.83 .10326E+01 .12532E+01 

7 -1.70 .59 1.80 .11964E+01 .14270E+01 

8 -1.64 .67 1.77 .13485E+01 .15810E+01 

9 -1.57 .74 1.73 .14876E+01 .17135E+01 

10 -1.49 .80 1.69 .16121E+01 .18233E+01 

11 -1.41 .85 1.65 .17211E+01 .19101E+01 

12 -1.32 .90 1.60 .18133E+01 .19737E+01 

13 -1.23 .93 1.55 .18879E+01 .20145E+01 

14 -1.14 .96 1.49 .19440E+01 .20333E+01 

15 -1.04 .98 1.43 .19813E+01 .20309E+01 

16 -.94 .99 1.37 .19992E+01 .20086E+01 

17 -.85 .99 1.30 .19976E+01 .19676E+01 

18 -.75 .98 1.23 .19764E+01 .19091E+01 

19 -.65 .96 1.16 .19357E+01 .18346E+01 

20 -.56 .93 1.09 .18760E+01 .17455E+01 

21 -.47 .89 1.01 .17977E+01 .16429E+01 

22 -.38 .84 .93 .17015E+01 .15283E+01 

23 -.30 .79 .84 .15881E+01 .14026E+01 

24 -.22 .72 .76 .14585E+01 .12669E+01 

25 -.15 .65 .67 .13138E+01 .11222E+01 

26 -.09 .57 .58 .11552E+01 .96920E+00 

27 -.04 .49 .49 .98386E+00 .80860E+00 

28 .01 .40 .40 .80145E+00 .64151E+00 

29 .06 .30 .31 .61056E+00 .47166E+00 

30 .10 .20 .22 .41800E+00 .31801E+00 

31 .14 .10 .17 .24484E+00 .29405E+00 

32 .19 .02 .19 .97678E+00 .43712E+00 

33 .19 -.02 .19 .97678E+00 .43712E+00 
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34 .14 -.10 .17 .24483E+00 .29405E+00 

35 .10 -.20 .22 .41801E+00 .31801E+00 

36 .06 -.30 .31 .61056E+00 .47166E+00 

37 .01 -.40 .40 .80145E+00 .64151E+00 

38 -.04 -.49 .49 .98386E+00 .80860E+00 

39 -.09 -.57 .58 .11552E+01 .96920E+00 

40 -.15 -.65 .67 .13138E+01 .11222E+01 

41 -.22 -.72 .76 .14585E+01 .12669E+01 

42 -.30 -.79 .84 .15881E+01 .14026E+01 

43 -.38 -.84 .93 .17015E+01 .15283E+01 

44 -.47 -.89 1.01 .17977E+01 .16429E+01 

45 -.56 -.93 1.09 .18760E+01 .17455E+01 

46 -.65 -.96 1.16 .19357E+01 .18346E+01 

47 -.75 -.98 1.23 .19764E+01 .19091E+01 

48 -.85 -.99 1.30 .19976E+01 .19676E+01 

49 -.94 -.99 1.37 .19992E+01 .20086E+01 

50 -1.04 -.98 1.43 .19813E+01 .20309E+01 

51 -1.14 -.96 1.49 .19440E+01 .20333E+01 

52 -1.23 -.93 1.55 .18879E+01 .20145E+01 

53 -1.32 -.90 1.60 .18133E+01 .19737E+01 

54 -1.41 -.85 1.65 .17211E+01 .19101E+01 

55 -1.49 -.80 1.69 .16121E+01 .18233E+01 

56 -1.57 -.74 1.73 .14876E+01 .17135E+01 

57 -1.64 -.67 1.77 .13485E+01 .15810E+01 

58 -1.70 -.59 1.80 .11964E+01 .14270E+01 

59 -1.75 -.51 1.83 .10326E+01 .12532E+01 

60 -1.80 -.43 1.85 .85890E+00 .10622E+01 

61 -1.84 -.33 1.87 .67684E+00 .85754E+00 

62 -1.86 -.24 1.88 .48815E+00 .64522E+00 

63 -1.88 -.15 1.89 .29486E+00 .43735E+00 

64 -1.89 -.05 1.89 .98533E-01 .27370E+00 

 

 
Figure 5: Comparison of computed and exact velocity distribution over the boundary of symmetric aerofoil using 

for 64 constant panels. 

 

Conclusion: An indirect panel method has been used for 

the calculation of ideal flow around two – dimensional 

body. The computed flow velocities obtained using this 

method is compared with the exact solutions for flows 

over the surface of a symmetric aerofoil. It is found that 

from tables (1) to (4) and figures (2) to (5), the results 

obtained with the indirect panel method for the flow field 

calculations are excellently close with the exact results 

for the body under consideration. 
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