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ABSTRACT: Explicit iteration formulas were proposed for solving the equation ( ) 0 mod kf x p , 

when f was the polynomial
nax b . Speedy algorithms were formulated for lifting solutions of a 

polynomial congruence mod p , to polynomial congruence mod .kp This was done reasonably fast, 

using proposed algorithm. Polynomial time was  , which was about the best possible since the number 

of bits in the answer was in general proportional to    The algorithm developed was instigated with an 

adaptation of secant method. For a polynomial  , with initial solutions
1

0  mod 
kx p  and 

2

1  mod 
kx p  to

( ) 0 mod kf x p , haggled a solution 2x  to
1 2( ) 0 mod k kf x p  with, 

1 1 0
2 1

1 0

( )( )
= ,

( ) ( )

f x x x
x x

f x f x




  where the inverse 

was computed using the Euclidean algorithm in the ring of integers modulo .kp The proposed technique 

endeavored to keep the elucidation consistently a little low to give advantage in finding the solution of 

congruences by means of explicit iteration techniques which proved quite fast in finding these solutions. 

Key words: Congruences, Secant method, Euclidean algorithm, Polynomial modulo
kp , Integers modulo 
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INTRODUCTION 

 In the past researchers have given numerical 

methods to solve congruences using prime divisors. The 

study of (Krishnamurthy and Murthy, 1983) describes a 

fast iterative scheme based on the Newton’s method for 

finding the reciprocal of finite segment p-adic numbers. 

The work of (Andersen and Jenkins, 2013) shows that the 

problem of division is reducible to the classical problem of 

finding the zeros of a polynomial. Hence, making it 

possible to use an algorithm which find zeros in a 

polynomial for division. The work of (Eric, 2009) 

elaborates several tricks for p-adic numerical analysis. An 

idea to reduce every polynomial to either linear or 

quadratic congruence is proposed by (Eugen, 2006). 

Several forms of Newton’s iterative methods are discussed 

by (Stoer and Bulirsch, 2013 and Ben, 1997). Also, the 

research work of (Michal and Xenophontos 2010) 

explains that iterative methods are useful for calculating 

the inverse of numbers modulo prime powers. The concept 

of finding inverse modulo prime powers is significant for 

understanding the solution of a linear congruence of the 

form ) m( 1 kpodax  . Thus it becomes interesting to find 

solutions of congruences of the type 1 ), m(  kpodbax kn

through Numerical Analysis as this is the generalization of 

the above case in a sense that if 1=n  and 1=b  is 

substituted in last equation then all of the results for 

finding the inverse of numbers modulo prime powers are 

produced. The typical procedure for solving polynomial 

congruences is the well-known Hensel lemma. Also, while 

solving an arbitrary polynomial congruence modulo with 

higher power of primes, it is observed that the application 

of the lemma is difficult and arduous. The following is the 

well-known version of Hensel’s Lemma reported by (Ivan 

and Zuckerman, 2005) and (Thomas, 2005). Some other 

manipulations of this lemma are found by (Adler and 

Coury, 1995) and (David, 2007). 

Hensel's Lemma: Suppose that ( )f x  is a polynomial 

with integral coefficients. If ( ) 0 mod kf x p  and 

( ) 0 mod f a p  , then there is a unique g mod p  such 

as 
1( ) 0 mod k kf a gp p   . 

Numerous repetitions of the above lemma are needed in 

order to complete a solution of a given equation modulo of 

higher power which is of course computationally 

intensive. After every iteration derivative computed roots 

are required. Thus one hesitates in using the above lemma 

for the solutions of polynomial congruences with higher 

power moduli. Root-finding iterative technique is 

employed to find solutions of linear and quadratic 

congruences modulo with higher power of a prime
p

. In 

particular, secant method is used to elucidate this concept. 

The following iterative algorithm reveals the concept of 

Secant Method as reported by (Autar, 2008). 

The Secant Method: It is well known that Secant method 

is more useful then Newton’s method because the former 
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method needs iterations without derivative that may be 

harder in various cases. Assume that two initial estimates 

0x  and 1x  are known for the desired root   of 0=)(xf . 

The iteration formula for Secant method is 

0,1,2,=,
)()(

))((
=

1

11

12 k
xfxf

xxxf
xx

kk

kkk
kk












 

In particular, for solving a linear of the form 

) m( kpodbax  , where kx
 and 1kx

 are  the initial 

solutions, then by using last equation, 2kx
 follow the 

following recursive equation 112 =   kkkkk xaxbxbxbx
.  

 As far as the convergence of an rth order iterative 

method is concerned, it affirms that the correctness or 

precision to calculate the existing estimation kx
 is only 

rk digit. This means that, if algorithm starts with a t -digit 

integer ky  as the starting approximation modulo 
mp , 

then 1ky  would be a new estimation in modulo 
rmp  

containing tr -digits. 

MATERIAL AND METHODS 

 In this research work secant method was 

employed to trial linear and quadratic congruences along 

with higher degree congruences. Proceeding steps 

computed a solution mod   ,  based on straight forward 

translation to the root-finding numerical techniques used 

for speeding convergence to a real root for polynomials 

that started with a given solution having higher degree 

congruences. This grabbed an interesting idea to form 

speedy algorithms together with the acknowledgement 

that the root-finding techniques were equally good with 

the congruence equations over the ring of integers. The 

p-adic convergence was proved using astute proofs. It was 

proved in Theorem 2, that if kx
, was the solution of the 

congruence as ) m( 12 k
podbax   and 1kx

, was the 

solution of the congruence as ) m( 22 k
podbax   then 

2kx
 was the solution of the congruence as

) m( 212 kk
podbax


 satisfied the equation given as: 

) m( )( 21
121

kk

kkkkk podxaxbxxxa


 
 

where ba,  and 0>n  were integers not divisible by a 

prime 
p

. Theorem 2 was applied recursively such that 

solutions modulo 
21

kk
p



were obtained. On the other 

hand, modulo higher powers of primes used lifting 

technique, which required 1 2 1k k 
 iterations to reduce 

the pitfall. The proposed explicit algorithm was not 

acquired by any sort of derivatives as used in lifting 

techniques, (this means that the needed derivatives were 

already incorporated) with some log k steps. Results found 

were concerned to calculate the solutions of congruences 

of the form  (mod )n kax b p , 1k , where p  was prime 

and 
, , 0 (mod )a b n p  using Secant method by 

restricting degree to 1 and 2. 

The following theorems illustrated the convergence 

together with solutions of linear and quadratic 

congruences modulo 
kp  using Secant method. Before 

giving the results, rewrite the following two equations. 

 (mod )n kax b p
 (1) 

0,1,2,...=,
)()(

))((
=

1

11
12 k

xfxf

xxxf
xx

kk

kkk
kk











 (2) 

Theorem 1. Let 
ba,

 be integers which were not 

divisible by any prime p  and 1.k  If kx
 was the 

solution of the congruence ) m( kpodbax   and 1kx
 

was the solution of the congruence was ), m( 1 kpodbax  

then 2kx
 was the solution of the congruence as 

) m( 2 kpodbax  which satisfied the equation as below:  

112 =   kkkkk xaxbxbxbx
 (3) 

Proof. Firstly, 
0==)( a

x

b
xf 

 was solved using equation 

(2). This yielded, 
.= 112   kkkkk axaxbxbxbx

 If kx  

and 1kx
 were the solutions of the congruences 

) m( kpodbax   and ) m( 1 kpodbax  respectively 

then there existed integers 1t  and 2t  such that 
k

k ptbax 1= 
 and 

1

21 = 

  k

k ptbax  which were put in (3), 

it yielded  
12

21

2

2 = 

  k

k pttbabx
 

1  f 212 s ) m( 22   kallorkkincepodb k

(4) 

Finally, 1=),( pb  implied that 1=),( 2kpb  and hence from 

(4), it was clear that 2kx
 was the solution of the 

congruence as 
2 (m  ).kax b od p 

 

 It was interesting to note that using initial 

estimates modulo 
1

k
p  and 

2
k

p  instead of 
kp  and 

1kp  

respectively required less iterations to find the desired 

solution by means of Secant method. The following 

theorem illustrated the solution of a quadratic congruence 

modulo 
21

kk
p



 using Secant method. 

Theorem 2. Let ba,  be the integers which were not 

divisible by an odd prime 
p

 and 1.k  If kx
 was the 

solution of the congruence as ) m( 12 k
podbax   and 1kx
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was the solution of the congruence as ), m( 22 k
podbax   

then 2kx
 was the solution of the congruence as 

) m( 212 kk
podbax


  that satisfied the congruence as given 

below 

) m( )( 21
121

kk

kkkkk podxaxbxxxa


 
 

Proof. To prove this, solved the equation, 

0==)(
2

a
x

b
xf 

 which used equation (2), 

.)(=)( 2

1

22

1

2

121   kkkkkkkkk xaxxxxxbxxxb
 

As in the proof of Theorem 1, there existed integers 1t  

and 2t  such that, 
1

1=
k

k ptbax   and .= 2
21

k

k ptbax   

Substituted the values and simplified into  

) m( )( 21
121

kk

kkkkk podxaxbxxxa


 
 (5) 

Finally, it was proved that 2kx
 was the solution of the 

congruence ) m( 212 kk
podbax


 . For this rewrite (5),  

) m( )(
)(

1
21

1

1

2

kk

kk

kk

k podxaxb
xxa

x






 




 
This implied that 

) m( )2(
)2(

1
21

1

22

1

22

1

22

1

2

2

2

kk

kkkk

kkkk

k podxabxxxab
xxxxa

x






 




 

Simplified into,  

) m( 
22

)2(2
21

12

1

1

12

1

12

2

kk

kk

kk

kk

kk

k pod
xaxptptb

xaxptptbb
ax

















 (6) 

Next it was claimed that 12 2 0 (m  ).k kb ax x od p  To 

prove the assertion it was assumed that, 

) m( 022 1 podxaxb kk   . Since 
p

 was an odd prime 

hence it yielded 
) m( 01 podxxb kk   . Then using 

equation (5), 
) m( 02 podxk   becomes the solution 

of the congruence ) m( 2 podbax   only if 
p

 divided b  

which was a contradiction since 1=),( pb . Hence it was 

concluded that 12 2 0 (m  )k kb x x od p  .This was 

further written as 

) m( 022 12

1

1 podxxptptb kk

kk  



 and hence 

). m( 022 21
12

1

1

kk

kk

kk podxxptptb




 
 So by 

Cancelation law (6) yielded that 2kx
 was the solution of 

the congruence as ). m( 212 kk
podbax


   

Remark 1: The technique developed for the solution of 

polynomial congruences, was equally good for the 

solutions of similar expressions having negative powers. 

This was entertained as below. 

For the solution of equations of the type, 

 (mod ),m rcx d q 
 it was sufficient to find the 

solutions of cu d (mod q ),m r where, 

ux 1 (mod q )r
. It was found that the roots of 

above equations were the inverses modulo q ,r

in the 

group of non-zero integers modulo q .r

 This asserted the 

solvability of linear congruence 1 (mod )rsz q

provided  
,s

 was a solution of  (mod ).m rcu d q  

But the
,s

 also satisfied 
 (mod ).mcu d q

 In 

other words, 
 (mod ).mcs d q

 Since d was not 

divisible by ,q  so  
mcu  was not divisible by either. It 

followed that u was not divisible by .q Thus u and q

were prime to each other. This yielded that the equation 

ux 1 (mod q )r
had a solution. Let it be .t  Then, t

was the desired solution of the congruence 

 (mod ).m rcx d q   

RESULTS AND DISCUSSION 

 The 
p

-adic theory of numbers was considered 

precious to explore many applications in mathematics and 

computer science since ages. An interesting relation 

between number theory and numerical analysis was 

studied, based on Newton’s method, which comprised of 

classical problem for finding the zeros of a polynomial. 

The problem of division was reduced by using zeros of 

polynomials to find inverse of a number modulo prime 

powers. The problem of finding zeros and inverse of 

numbers was proposed by (Krishnamuthy and Murthy, 

1983, Andersen and Jenkins, 2013 and Michal and 

Xenophontos, 2010) who used division schemes from the 

classical functional iterative schemes and was extended 

for the polynomial congruenes. These schemes were 

compared with the schemes currently used in the 

high-speed digital computers. Instead of using detrimental 

schemes given by (Kalantari et al, 1997), which was more 

efficient scheme based on secant method has also been 

introduced and compared with existing iterative 

techniques. (Khalid and Malik, 2012) provided solutions 

of congruences of the form ax
n
 ≡ b(mod p

k
 ), k≥1 where a, 

b and n>0 were integers which were not divisible by a 

prime p using Halley's iterative algorithm. It was observed 

that the solutions of polynomials of the type ax
n
 ≡ b(mod 

p
k
 ), k≥1 was calculated reasonably fast using proposed 

technique. Inductively it meant, a polynomial time 

algorithm in  , which was the best possible, as the number 
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of bits in the answer was in general proportional to  . 

Thus polynomial congruences were solved using 

numerical analysis without using reciprocals of
p

-adic 

numbers by means of recursive techniques which was 

similar to the findings of (Khalid and Ahmad 2014). This 

was also achieved by giving explicit iteration formulas in 

equations (3) and (5), for solving the equation ( )  
  (      ), when   was a polynomial. By “explicit” it 

meant that the formulas into which the needed derivatives 

were already incorporated. For instance, Theorem 1 and 

Theorem 2 were free from any sort of derivative. On 

comparison with other techniques, the proposed algorithm 

needed less iteration to find a solution of modulo higher 

power of primes which provided such computational 

techniques using Newton’s method but never discussed 

the computational complexity of these methods. The 

results and analytical analysis showed that the use of 

Secant method greatly reduced the computational 

complexity as compared to other techniques discussed by 

(Stoer and Bulirsch, 2013). The following example 

illustrated Theorem 2 which solved a quadratic 

congruence. This showed that, a modulo power 21 was 

obtained just in five iterations using proposed technique, 

whereas the same took 21 iterations when lifting 

techniques were used like Hensel’s Lemma (HL). This 

was further elaborated by the use of an example given 

below: 

Example 1. Objective was to provide solution of the 

quadratic congruence )11 m( 72 212 odx  .which first 

solved the congruence 11) m( 72 2 odx   and 

)11 m( 72 22 odx   which yielded was that formed the 

initial estimates. Simple calculations revealed that 
11) m( 3,8 odx   were the solutions of the congruence was 

11). m( 72 2 odx   Then by Theorem 1, it was found that 

)11 m( 113,8 2odx   were the solution of the congruence 

was 11) m( 72 2 odx  . Thus either choose 3=1x  , 113=2x  

or 
8=1x

, 8=2x  as initial estimates. By taking 3=1x  , 

 113=2x  and putting it in equation(5), it generated

)11 m2.3.113(72.116 3

3 odx 
. Through simplification 

)11 m( 1202 3

3 odx 
 was obtained. Successive application 

of the same technique yielded the roots of the given 

congruence modulo 
53,1111 , and so on until the solution of 

the congruence 
).11 m( 72 212 odx 

 was obtained. 

The necessary computations together with Hensel’s 

Lemma (HL) were summarized in the following table. 

Table 1. Comparison of Hensel Lemma, and Secant Method. 

 

k  
Methods 

kx
 1kx   2kx 

1 2 (mod )k kp 

 
1 Secant 

Hensel Lemma 

3 

3 

113 

113
2 (mod 11 )  

1202
3 (mod 11 )  

- 

2 Secant 

Hensel Lemma 

113 

113 

1202 

1202
3 (mod 11 )  

156929
5 (mod 11 )  

- 

3 Secant 

Hensel Lemma 

1202 

1202 

156929 

4122
4 (mod 11 )  

52820606
8 (mod 11 )  

- 

4 Secant 

Hensel Lemma 

156929 

4122 

52820606 

4122
5 (mod 11 )  

29612017359708
13 (mod 11 )  

- 

5 Secant 

Hensel Lemma 

52820606 

4122 

29612017359708 

326224
6 (mod 11 )  

5531156954935109939642
21 (mod 11 )  

Solution of Congruence )11 m( 72 212 odx   with 3=1x  and 113=2x  as Initial estimates. 

 

 Moreover, from the numerical computations of 

Example 1, it was observed that the time complexity for an 

ordinary iterative method was similar to Hansel’s lemma 

as reported by (Ivan and Zuckerman, 2005 and David, 

2007) was )(mO , whereas algorithms developed by 

proposed method yielded result as 
)(

21
mlogO kk   for 

equation (5). Therefore, the techniques suggested in this 

study performed much faster for values of m  in powers 

of 21 kk 
 in contrast to existing techniques for solving 

polynomial congruences.
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Figure 1 Gives a Comparison between the performance of Hensel lemma and Secant method. 

 
 Figure 1 also showed the comparative 

performance of Suggested method as compared to Hensel 

lemma in terms of number of computations per unit time. 

It was seen that just after ten iterations it was above the 

desired line by means of secant method while the speed of 

Hensel’s lemma was close to the number of iterations. 

This meant that a solution modulo 
mp needed m steps by 

means of Hensel’s lemma whereas it required log ( m ) 

steps using proposed technique. 
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