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ABSTRACT:  Random  censoring  is  a  type  of  right  censoring  in  time-to-event  studies. The 
exponential survival time with an exponential censor time is focused to derive classical and the Bayes 
estimators.  The  uniform and  the  Inverted  Gamma  priors  are  assumed  to  carry  out  the  Bayesian 
analysis. The posterior predictive distribution is derived and the equations required for the construction 
of predictive intervals are developed. The construction of the credible intervals and that of the Highest 
Posterior  Density  (HPD) intervals  is  elaborated  theoretically  as  well  as  conducted  numerically. A 
comprehensive simulation study assuming various parameter points and sample sizes is conducted to 
highlight the properties and comparison of the estimates.
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INTRODUCTION

Censoring  is  an  unavoidable  feature  of  the 
lifetime data. The lifetimes with constant hazard rates are 
modeled using exponential distribution which is known 
for its memory less property.   Ahmed  et al. (2005) and 
Ali et al. (2005) presented robust weighted likelihood and 
Bayes  estimation  of  the  Exponential  parameters 
respectively.  Raqab and Ahsanullah (2001) focused the 
ordered  generalized  exponential  situation.  Saleem  and 
Aslam (2008a and b) use ordinary type I right censored 
data for Bayesian analysis of Rayleigh mixture. Saleem 
and  Aslam  (2009)  considered  Rayleigh  survival  time 
assuming random censor time. Saleem et al. (2010) used 
ordinary type I right censored data for Bayesian analysis 
of Power function mixture. This paper is an extension of 
Abu-Taleb  et  al.  (2007)  with  some  added  features  in 
terms  of  algebraic  expressions  along  with  numerical 
results and simulation study to explore and compare the 
properties  of  the  estimators.  The  posterior  predictive 
distribution is derived and the equations required for the 
construction  of  predictive  intervals  are  presented.  The 
construction  of  the  credible  intervals  and  that  of  the 
Highest  Posterior Density (HPD) intervals is elaborated 
theoretically  as  well  as  conducted  numerically. 
Computations  are  performed  in  Mathematica  and 
Minitab.

MATERIALS AND METHODS

Maximum Likelihood Estimators: Let the survival time 
(x)  and  the  censor  time  (T)  independently  follow 

exponential  distributions  with unknown parameters   θ  

and  λ  respectively. The densities are 
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A sample as described in Saleem and Aslam (2009) is 

considered and the discrete probability distribution of iD

and the joint density of  ( , )i iY D  are given in Abu-Taleb 
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where ( , )θ λ=θ  is the vector of unknown parameters. 
The  expressions  for  the  estimated  variances  are 
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Bayes Estimates Assuming Informative Prior:  In case 
of a formal informative prior is available, the use of prior 
information  is  just  like  adding  a  fixed  number  of 
observations to the given sample size and consequently 
leads to the reduction of variance of the Bayes estimates 
based on the said informative prior. Bolstad (2004) has 
given an account of a method to evaluate the worth of a 
formal  prior  information  in  terms  of  the  number  of 
additional observations supposed to be added to the given 
sample  size.   It  is  interesting  to  note  that  the  use  of 
Uniform prior contributes zero number of observations to 

the  given  sample.  Let  θ  and  λ  follow  the  Inverted 

gamma distribution with hyper-parameters 1 1( ,  )a b
 and 

2 2( ,  )a b
 respectively. Assuming independence, we have 

a joint  prior that  is  incorporated  with the likelihood to 
yield the following joint posterior.
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The marginal posterior distributions of θ and λ are
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Using  the  squared  error  loss  function,  the  Bayes 

estimators of θ and λ are found to be
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Each of these Bayes estimators is a linear combination of 
its  ML  as  well  as  its  Bayesian  (Uniform  prior) 
counterpart.  The  expressions  for  the  Variances  of  the 
Bayes  estimators  with  the  Inverted  Gamma  prior  are 
derived as 
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Each of these variances is a linear combination of its ML 
as well as its Bayesian (Uniform prior) counterpart.

Bayes Estimates Assuming Uninformative Priors: The 
uniform  prior  is  the  most  famous  example  of 
uninformative  prior  which  materialize  the  use  of 
Bayesian  estimation  methods  when  no  formal  prior 

information  is  available.  1 1( ) ;  0f kθ θ= < < ∞
 and 

2 2( ) ;  0f kλ λ= < < ∞
.  Assuming  independence  we 

have  an  improper  joint  prior that  is  proportional  to  a 
constant and is incorporated with the likelihood to yield a 
proper  joint  posterior  distribution.  Using  the  squared 

error  loss  function,  the Bayes  estimators  of  θ  and  λ

assuming prior can be obtained on setting 1 2 0b b= =
 in 

the Bayes estimators in case of informative prior.

The Posterior Predictive Distribution:  The predictive 
distribution  contains  the  information  about  the 
independent future random observation given the already 
accomplished  observations.  Bolstad  (2004)  and  Bansal 
(2007)  have  given  a  detailed  account  of  the  predictive 
distribution. The posterior  predictive distribution of the 

future observation, y  is defined as 
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The Bayesian Predictive Intervals: The (1 )100% α−

Bayesian predictive interval  ( , )L U can be obtained by 
solving the 

two equations 0
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( )p y z
given by (8). These equations, on simplification 

become

and  
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Evaluating  these  predictive  intervals  for  various 
combinations of the hyper-parameters, a trend in hyper-
parameters can be determined which leads to enhance the 
efficiency of the Bayes estimates. 

The Bayesian  Credible  Intervals:  If  1( )p θ z
 is  the 

posterior distribution given the sample and prior of the 

parameter of interest  θ , we may be interested in finding 

an  interval 1 2 ( , )θ θ
 such  that 
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.  The  credible 
interval may be declared as a Bayesian counterpart of the 
classical  confidence  interval.  However  credible interval 
may not be unique even for a unimodal posterior density. 

The  (1 )100% α− Bayesian  credible  intervals  are 
obtained using the marginal distribution of the respective 
parameter of interest. The marginal posterior densities of 
θ  and  λ (assuming uniform prior)  give  the  following 
credible intervals.
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And  the  marginal  posterior  densities  of   θ  and  λ
(assuming Inverted Gamma prior) result in the following 
credible intervals. 
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The Highest Posterior Density (HPD) Intervals:  The 
Highest  Posterior  Density  (HPD)  Interval  may  be 
declared as an advanced version of the Credible Interval. 

In case of a unimodal density, an additional condition can 
be imposed on a Credible Interval to make it unique by 
tilting  it  towards  the  most  concentrated  part  of  the 
posterior density. This unique Credible Interval is called 
an  HPD Interval.  The  HPD interval  is  defined  on  the 
posterior density such that the posterior density at every 
point inside the HPD interval is greater than the posterior 
density  at  every  point  outside  the  HPD  interval.  An 

interval 1 2( , )θ θ
would be a  (1 )100%α− HPD interval 

forθ if  it  satisfy  the  following  two  conditions 
simultaneously as given in Sinha (1998).
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Solving  these  two  equations  simultaneously  gives  the 

HPD  interval  1 2( , )θ θ
for  θ .  Here 
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for  λ is obtained by solving the following two 

equations.
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We  simulate  random  samples  of  sizes 
50,100,250n = of  exponential  survival  and 

termination times with parameters  ( ,  ) θ λ = (75,50)

and (175,200) . The results of the simulation study are 
presented in Tables 1-2.

Table1  The  ML  estimates  and  the  Bayes  estimates  (with  standard  errors  in  the  parenthesis)  assuming  the 

Uniform  and  the  SRIG priors  of  parameters 75,  50θ = λ =  Hyper-parameters  assumed  are 

1 2 4.5a a= =
, 1 2 0b b= =

.

Sample
Size

Methods

ML estimates
Bayes estimates

(Uniform)
Bayes estimates

(SRIG)
n θ̂ λ̂ θ̂ λ̂ θ̂ λ̂
50

77.792
(17.9267)

50.838
(9.3925)

87.1963
(22.067)

54.5816
(10.6576)

72.01
(16.3495)

48.355
(8.8546)

100
75.6471

(12.0794)
50.4732
(6.5632)

79.7318
(13.2612)

52.2431
(6.9742)

72.8519
(11.5556)

49.223
(6.3731)

250
75.9146
(7.6485)

50.1305
(4.0986)

77.4906
(7.9302)

50.8103
(4.1967)

74.7742
(7.5141)

49.6325
(4.0511)

Table2  The ML estimates  and the  Bayes  estimates  (with  standard errors  in  the  parenthesis)   assuming the 

Uniform and the SRIG priors of parameters 175,  200θ = λ = . Hyper-parameters assumed are 1 2 4.5a a= = , 
1 2 0b b= = .

Sample
Size

Methods

ML estimates
Bayes estimates

(Uniform)
Bayes estimates

(SRIG)
n θ̂ λ̂ θ̂ λ̂ θ̂ λ̂
50

179.357
(35.3257)

206.047
(43.5989)

194.559
(40.8574)

226.53
(51.7014)

169.457
(33.0329)

193.019
(40.349)

100
176.087
(24.319)

201.777
(29.8625)

183.092
(26.0545)

211.058
(32.3381)

171.178
(23.525)

195.341
(28.7456)

250
175.937

(15.2653)
202.125

(18.8039)
178.629

(15.6778)
205.689

(19.3905)
173.971
(15.066)

199.532
(18.522)

Table3. The 95% Bayesian Credible Intervals and the HPD Intervals assuming the Uniform and the Inverted 

Gamma prior. Hyper-parameters assumed are 1 220, 25a a= = , 1 23, 1b b= = .

Parameters Credible Intervals
(Uniform prior)

HPD Intervals
(Uniform prior)

Credible Intervals
(Inverted Gamma)

HPD Intervals
(Inverted Gamma)

150θ = (133.391,171.948) (132.63,171.03) (123.678,157.846) (123.0,157.1)
100λ = (93.2583,115.044) (92.9,114.63) (87.3198,106.957) (87.0,106.59)

It is immediate from the Table 1 that increasing 
the  sample  size  reduces  the  standard  errors  of  the 
estimates. ML estimates and Bayes (Uniform) estimates 
are overestimated but the extent of this overestimation is 
higher  in  the  latter.  The  Bayes  (SRIG)  estimates  are 
under  estimated but are  more précised  than the rest  of 
estimates.  The  extent  of  over  or  under-estimation  is 
reduced with the increase in sample size. Also the censor 
time parameter has low standard errors than that of the 

life  time  parameter.  It  is  evident  from  Table  2  that 
increasing the sample size reduces the standard errors of 
the  estimates.  ML  estimates  and  Bayes  (Uniform) 
estimates  are  overestimated  but  the  extent  of  this 
overestimation is higher in the latter. The Bayes (SRIG) 
estimates are under estimated but are more précised than 
the  rest  of  estimates.  The  extent  of  over  or  under-
estimation is  reduced  with the increase  in  sample size. 
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Also the life time estimates have lesser standard errors 
than that of censor time estimates. 

Table  3  shows that  both the credible  intervals 
and  the  HPD intervals  assuming  the  Informative  prior 
(The  Inverted  Gamma)  are  pretty  shorter  than  those 
obtained  by  assuming  the  state  of  ignorance  (uniform 
prior). 

This  again  highlights  the  advantage  of 
incorporating the informative conjugate prior information 
into the analysis rather than an uninformative one that has 
either no proper density or involves no hyper-parameters. 
The  HPD  intervals  are  not  only  narrower  than  their 
corresponding credible intervals but are also slightly left 
aligned to capture the most denser parts of the concerned 
marginal posterior distributions. This is supported by the 
fact  that  the  marginal  distributions  of  the  unknown 
parameters  are  positively  skewed.  A  more  extensive 
analysis  can  be  managed  by  considering  a  number  of 
different parameter points and a variety of sample sizes.

The simulation study shows that increasing the 
sample size reduces the standard errors of the estimates. 
ML  estimates  and  Bayes  (Uniform)  estimates  are 
overestimated  but  the  extent  of  this  overestimation  is 
higher  in  the  latter.  The  Bayes  (SRIG)  estimates  are 
under  estimated but are  more précised  than the rest  of 
estimates. This shows that the use of an informative prior 
is more paying than an uninformative prior. The extent of 
over or under-estimation is reduced with the increase in 
sample  size.  Also  the  life  time  estimates  have   lesser 
(greater)  standard  errors  than  that  of  censor  time 
estimates if  the lifetime parameters  are smaller  (larger) 
than the censor time parameters.  The Credible intervals 
assuming the Inverted Gamma prior are much narrower 
than the credible intervals assuming the Uniform prior. 
The HPD intervals assuming the Inverted Gamma prior 
are  more  precise  than  the  HPD intervals  assuming the 
state of ignorance. It is the use of prior information that 
makes a difference everywhere. As the marginal posterior 
densities are positively skewed, so the HPD intervals are 
slightly  left  aligned  as  compared  to  the  corresponding 
credible intervals. Also, the lengths of the HPD intervals 
are shorter than the lengths of the corresponding credible 
intervals. The predictive intervals can be used to discover 
a trend and a range of the hyper-parameters that ensure 
the  more  precise  estimates.  This  can  also  be  used  to 
further  refine  the  prior  pieces  of  information  already 
provided by a number of experts.
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