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ABSTRACT: In the current analysis vibration characteristics of a cylindrical shell composed of three layers are 

examined. This configuration is framed by three layers of different materials in thickness direction such that the inner 

and outer layers are of isotropic nature and functionally graded material is used for the middle layer. The shell is 

supported on Winkler and Pasternak foundations. Love shell equations are considered to study the vibration problem. 

The Winkler and Pasternak foundations are combined with the shell dynamical equations in the transverse direction. The 

present shell problem is solved by using wave propagation approach. A few comparisons of shell frequencies are done to 

verify the validity and accuracy of the present technique. 

Key words: Three layered cylindrical shells, functionally graded material, Winkler and Pasternak elastic foundations, 
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INTRODUCTION 

 The problem of shell vibration was first studied 

by Sophie Germanie in 1821. (Rayleigh, 1884) and 

(Love, 1888) then analyzed it in last quarter of nineteenth 

century. Arnold and Warburton (1948, 1953) did some 

seminal and pioneering study on vibration characteristic 

of cylindrical shells in which the complete boundary 

value problem of a finite cylindrical shell was studied in 

detail. Sewall and Naumann (1968) analyzed the 

experimental and analytical vibration characteristics of 

stiffened and unstiffened cylindrical shells. (Paliwal et al. 

1996) investigated the vibrations of a thin circular 

cylindrical shell attached with elastic foundations. 

Membrane theory was employed and response of the 

elastic foundations was represented by Winkler and 

Pasternak models. (Loy et al. 1998) investigated the 

vibrations of functionally graded material cylindrical 

shells, made up of FG material composed of stainless 

steel and nickel. The purpose of work was to examine 

natural frequencies, influence of the constituent volume 

fractions and effects of configurations of constituent 

materials on their frequencies. (Zhang et al. 2001a) 

analyzed the vibrations of cylindrical shells employing 

wave propagation approach.  Comparison of numerical 

results obtained by using the wave propagation approach 

and numerical finite element method were executed. 

(Bing et al. 2005) analyzed natural frequencies of thin-

walled circular cylindrical shells under several end 

conditions and used Donnell’s thin shell theory and basic 

equations based on the wave propagation method. Mode 

shapes were drawn to describe the circumferential mode 

number n and axial mode number m, and these natural 

frequencies are computed numerically and compared with 

those of finite element method to confirm the reliability 

of theoretical solutions. (Goncalves et al. 2006) used a 

qualitatively accurate low dimensional model to 

investigate the non-linear motion behaviour of shallow 

cylindrical shells under axial loading. The dynamical 

version of the Donnell non-linear shallow shell equations 

were discretized by the Galerkin approach.  

 Li and Batra (2006) analyzed buckling of 

simply-supported three layer circular cylindrical shell 

under axial compressive load. Wang and Lin (2006)  

presented the formulation of motion equations for a 

symmetric cross-ply laminated cylindrical shell with a 

circumferential stiffener. Two types of the 

circumferential stiffeners were taken: outer ring and inner 

ring. (Zhang et al. 2006) presented the formulation and 

numerical analysis of circular cylindrical shells by the 

local adaptive differential quardrature method, which was 

applied to both localized interpolating basis functions and 

exterior grid points for boundary treatments. (Pellicano, 

2007) presented a method for analyzing linear and non-

linear vibrations of circular cylindrical shells based on 

different end conditions. Simply supported and clamped-

clamped conditions were analyzed. (Arshad et al. 2007) 

derived the frequency equation in the form of eigen-value 

problem by employing Rayleigh-Ritz method. Love’s 

thin shell theory was used for strain-displacement and 

curvature-displacement relation. They studied the natural 

frequency for simply-supported boundary conditions and 

compared the results with those mentioned in the 

literature to check the validity of the approach. (Iqbal et 
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al. 2009) applied wave propagation approach to analyze 

vibrations of functionally graded material circular 

cylindrical shells. This methodology was very easy to 

apply. Axial model dependence was carried out by 

exponential functions. (Shah et al. 2009b) studied the 

effects of volume fraction law on the vibration 

frequencies of thin FG cylindrical shells. Material 

parameters in shell radial direction were ranked 

according to the exponential law. Love’s thin shell theory 

was used in order to derive the expressions for the strain-

displacement and curvature-displacement relationships. 

To get the shell equations of motion, Rayleigh-Ritz 

approach was applied. (Arshad et al. 2011) studied an 

analysis on vibrations of bi-layered cylindrical shell made 

of two layers which were functionally graded. The 

thickness of the shell layers was considered to be equal 

and constant. (Naeem et al. 2010) studied the vibration 

frequency characteristics of functionally graded 

cylindrical shells using the generalized differential 

quadrature method. The method was founded on the 

approximation of the derivatives of the unknown 

functions involved in differential equations at the mesh 

points of the solution domain. It was a sophisticated 

technique that gives accurate and robust results. A 

number of comparisons were done to check the 

effectiveness, robustness and accuracy of the presented 

method.  

Formulation: A thin-walled cylindrical shell is 

considered here with the geometrical parameters: length 

L, thickness h and mean radius R. The orthogonal 

coordinate system (     ) is taken to be at the surface 

of the shell where x,   and z represent the axial, 

circumferential and radial coordinates respectively. 

Young’s modulus E, the Poisson ratio ν and the mass 

density ρ are the shell material parameters. The axial, 

circumferential and radial displacement deformations are 

denoted by u(     ), v(     ) and w(     ) 

respectively with regard to the shell middle surface. 

Strain energy U for a thin vibrating cylindrical shell is 

written as: 

   
 

 
∫ ∫ * + , -* +     

  

 

 

 
                      (1) 

where  * +  , -     * + are defined as: 

* +   *                 +                             (2) 

, - = 0
  
  

1                                                          (3) 

where    B and D are sub-matrices of extensional, 

coupling and bending stiffness and for plane stress 

condition, they are given as: 

, -   [

       
       
     

]      , -  

 [
       
       
     

]  ,    , -   [
       
       
     

] 

where     ,     and    (             ) stand for 

extensional, coupling and bending stiffness respectively 

and defined as: 
/2

2

/2

( , , ) (1, , )

h

ij ij ij ij

h

A B D Q z z dz





 
                             (4) 

Kinetic energy T of a thin vibrating cylindrical shell 

attains the following form:  

T= ∫ ∫    [.
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where t symbolizes the time variable and    denotes the 

mass density per unit length and is defined as: 

    ∫  
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 Love's thin shell theory is applied for strain-

displacement and curvature-displacement relationships. 

The Lagrangian energy functional ( ) which is the 

difference of strain and kinetic energies, is written as: 

                                                                    (7) 

Hamilton’s principle is utilized to the Lagragian energy 

functional (  ). Winkler and Pasternak foundations 

terms (       ) are attached in the radial 

direction and equations of motion of thin cylindrical shell 

are obtained in differential operator form as: 

                  
   

    

                 

   

   
 

2
2

31 32 33 2

w
w w wtL u L v L K G

t



     
               (8) 

where    (         ) state the differential operators 

with regard to x and   and are given in Appendix I and G 

and K stand for Pasternak and Winkler foundation 

modulii.  Differential operator    is defined as: 
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Shell dynamical equations attain the following form after 

applying differential operators:  
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where    
    are defined in Appendix II. 

Numerical procedure: For the present shell problem, the 

wave propagation approach is used to investigate the 

vibration characteristics of three-layered cylindrical 

shells with isotropic material at the middle layer resting 

on Pasternak and Winkler elastic foundations. With the 

applications of present approach, the vibrations of 

functionally graded cylindrical shells are examined for 

simply supported-simply supported, clamped-clamped, 

clamped-simply supported and clamped-free boundary 

conditions. This approach is very convenient and easily 

can be applied to extract the shell vibration 

characteristics, saves time and a huge amount of 

algebraic expressions. To separate the time and space 

variables, the following modal displacement form is 

employed: 

u(     )       (  )  (      ) 

v(     )       (  )  (      ) 

w(     )       (  )  (      )                   (11) 

 along the longitudinal, circumferential and 

transverse directions respectively. The constants A, B and 

C are the amplitudes of vibrations in the x,   and z 

directions respectively, n is the number of circumferential 

waves and    stands for axial wave number associated 

with a boundary condition as given by (Zhang et al. 

2001a).   denotes the natural angular frequency of the 

cylindrical shell. 

Derivation of frequency equation: Substitution of the 

shell deformation displacement functions u, v and w from 

the Eq. (11) in Eq. (10), the system of shell dynamic 

equations transformed into the following form: 
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where    
  (         ) are described in Appendix III. 

The simultaneous algebraic equations (12a)-(12c) are 

written in matrix form as: 
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For non-trivial solution, the determinant of the matrix 

coefficients is vanished. This eigen - value problem is 

solved by using MATLAB software to extract the natural 

frequencies of the cylindrical shells. 

RESULTS AND DISCUSSION 

Simply supported cylindrical shells: In Table 1, the 

frequency parameters  for a cylindrical shell with 

simply supported boundary conditions, are compared 

with those results determined by (Zhang et al. 2001b). 

The geometrical parameters are assumed to be as: 

       , h/R=0.05. For the parameters     , a 

value of     is used and n are selected from 0-4 in 

the comparison. The material properties of the shell are 

given as:         kg/m
3
 ,       and             

N/m
2
 . 

Table 1: Comparison of frequency parameter 

ER /)1( 2     for a SS-SS cylindrical 

shell (                ) 

 

h/R n (Zhang et 

al.2001) 

Present % 

Difference 

0.05 0 0.0929586 0.0929489 -

0.0104348 

 1 0.0161065 0.0161025 -

0.0248347 

 2 0.0393038 0.0392985 -

0.0134847 

 3 0.1098527 0.1098247 -

0.0254887 

 4 0.2103446 0.2102848 -
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0.0000598 

Clamped - clamped cylindrical shells:  

 

In Table 2, there is a comparison of analytical frequency 

parameter ( ). The numerical results for a clamped-

clamped cylindrical shells evaluated by the present 

method are compared with those in (Naeem et al. 2009). 

The parameters used in this comparison are:    , 

        mm,         mm,        mm,   

         N/m
2
,      ,            Kg/m

3
 and 

n from 3 to 14 . 

 

Table 2: Comparison of analytical frequency parameter 

ER /)1( 2  
 for a clamped-clamped 

(C-C) cylindrical shells (    ,         

mm,         mm,        mm,        

    N/m
2
,      ,            Kg/m

3
) 

 

n (Naeem et al.2009) Present % Difference 

3 0.1033 0.1205 16.650 

4 0.0684 0.0752 9.941 

5 0.0517 0.0546 5.609 

6 0.0476 0.0491 3.151 

7 0.0529 0.0537 1.512 

8 0.0640 0.0646 0.937 

9 0.0788 0.0794 0.761 

10 0.0964 0.0970 0.622 

11 0.1162 0.1168 0.516 

12 0.1381 0.1387 0.434 

13 0.1620 0.1627 0.432 

14 0.1880 0.1886 0.319 

 

Clamped-simply supported cylindrical shells: Table 3 

displays a comparison of frequency parameters 

ER /)1( 2  
 determined by the present method 

with ones determined by (Naeem et al. 2009) for a 

clamped-simply supported cylindrical shell. A good 

agreement is obvious between the two sets of results.  

Table 3: Comparison of frequency parameter 

ER /)1( 2  
 for a clamped - simply 

supported cylindrical shells (        
                   ) 

 

n (Naeem et al. 2009) Present %Difference 

1 0.024029 0.024721 2.88 

2 0.008283 0.008282 -0.01 

3 0.005844 0.005852 0.14 

4 0.008705 0.008710 0.05 

5 0.013678 0.013684 0.04 

6 0.019973 0.019979 0.03 

7 0.027459 0.027466 0.02 

8 0.036111 0.036118 0.02 

9 0.045984 0.045929 -0.12 

10 0.056889 0.056897 0.01 

Clamped - free cylindrical shells: In Table 4, frequency 

parameters ( ) for a clamped-free cylindrical shell are 

compared with those given by (Naeem and Sharma, 

1999). Naeem and Sharma employed the Ritz formulation 

to investigate the shell problem, whereas the wave 

propagation technique is used to calculate shell 

frequencies. A good agreement between the results is 

noticed. There is once again an excellent agreement 

between the two sets of analytical results.  

Table 4: Convergence of frequency parameter 

ER /)1( 2  
  for clamped-free (C-F) 

cylindrical shell (    , 
 

 
   

 

 
       

     ) 

 

 From the above comparisons of numerical 

results, it is noticed that the method employed here is 

very efficient, valid, fast and provides accurate results.  

Three - layered cylindrical shells: A number of results 

for the proposed three-layered cylindrical shell with 

middle layer consist of functionally graded material, as 

shown in Fig. 1, are determined for various sets of 

material and geometrical parameters. The inner and outer 

layers of the shell are comprised of isotropic material 

whereas the middle layer is assumed to be functionally 

graded Material properties of shell are represented by 

Young’s modulus (E), Poisson’s ratio ( ) and mass 

density ( ).  

N (Naeem and Sharma, 

1999) 

Present % 

Difference 

1 0.055904 0.042417 -24.13 

2 0.020086 0.014424 -28.19 

3 0.010636 0.008137 -23.49 

4 0.010137 0.009314 -8.119 

5 0.014108 0.013862 -1.744 

6 0.020138 0.020050 -0.437 

7 0.027541 0.027504 -0.022 

8 0.036162 0.036145 -0.047 

9 0.045958 0.045951 -0.015 

10 0.056917 0.056916 -0.002 



Pakistan Journal of Science (Vol. 65 No. 3 September, 2013) 

 342 

 
Fig.1  Geometry of three layered cylindrical shell 

 In general, vibration characteristics are most 

influenced by Young’s modulus. In this study, the 

Poisson’s ratio is presumed to be constant for 

functionally graded materials whereas the Young’s 

modulus dependents on intrinsic thickness variable (z) as 

well as the Young’s modulus of constituent materials 

forming functionally graded layers. Here two 

configurations of a cylindrical shell are considered to 

suggest with regard to the shell layer thickness. In first 

configuration, the thickness of each layer is supposed to 

be of h/3 while in the second configuration, the thickness 

of each of the inner and outer layers are of h/4 and that of 

middle layer is of h/2.  

 The stiffness moduli     ,     and      are 

modified in according to the thickness of material layers 

when inner and outer layers are isotropic and middle is 

functionally graded as: 

        
  (         )     

 (  )
    

   (         )
  

       
  (         )     

 (  )
    

   (         )
 

       
  (         )

    
 (  )

    
   (         )

      

                                                                                (14) 

 where           and in(isotropic), m(FG), 

out(isotropic),  are associated with inner isotropic, middle 

functionally graded, outer isotropic layers of cylindrical 

shell respectively. Here by considering the constituent 

materials of stainless steel and aluminum for isotropic 

layers and also the FG layers are structured from two 

kinds of materials, nickel and zirconia. In this way, four 

types of shells are obtained and are listed in the following 

Table 5.  

Table 5: Description of cylindrical shells 

 

Types Isotropic 

Inner 

FGM Material 

Middle 

Isotropic 

outer 

Type 

1 

Stainless 

Steel 

Zirconia - Nickel Stainless 

Steel 

Type 

2 

Stainless 

Steel 

Nickel - Zirconia Stainless 

Steel 

Type3 Stainless 

Steel 

Zirconia - Nickel Aluminum 

Type 

4 

Stainless 

Steel 

Nickel - Zirconia Aluminum 

 

 Material properties of isotropic materials: Steel 

and Aluminum are given in Table 6 whereas the material 

properties of the constituent materials forming 

functionally graded layers are listed in Table 7. 
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Table 6: Material properties of isotropic materials 

 

Isotropic  E(N/m
2
) Poisson 

ratio( ) 

Density   

(Kg/m
3
) 

Stainless 

Steel 

68.95E+09 0.315 2.7145E+03 

Aluminum  2.1E+11 0.28 7.8E+03 

 

Table 7: Material properties of nickel and zirconia 

 

FGM E(N/m
2
) Poisson 

ratio( ) 

Density   

(Kg/m
3
) 

Nickel 2.05098E+11 0.3100 8900 

Zirconia 1.6806296E+11 0.297996 5700 

 

Frequency analysis of cylindrical shells: In this section, 

variation of frequencies for four types of cylindrical 

shells described above are analyzed for three end 

conditions viz,  clamped - clamped (C - C), clamped - 

simply supported (C - SS) and clamped - free (C - F). 

Variations of natural frequencies (Hz) against 

circumferential wave number ( n ): In Tables 8-10 , 

natural frequencies (Hz) of four types of cylindrical shells 

are given against the circumferential wave numbers (n). 

Clamped - clamped , clamped - simply supported and 

clamped - free boundary conditions applied on the shell 

ends. The shell parameter data is         
              For functionally graded layer, the 

power law exponent p, is 5. The numerical results exhibit 

the well-known characteristic of shell vibration 

frequencies, i.e., the value of the frequency first decreases 

achieves its lowest value and then it begins to increase 

with the circumferential wave modes (n). For Type 1 and 

2, the outer and inner layers are of steel. This shows that 

the values of shell frequencies increase with 

interchanging the order of constituent materials forming 

the functionally graded middle layer. For Type 1, the 

inner and outer layer is of steel whereas in Type 3, inner 

is of steel and outer is of aluminum. The frequency 

increases with the interchange of inner and outer layers 

material whereas the configuration of functionally graded 

layer is same. Also in Type 4, the inner and outer layers 

posses the same materials as in Type 3 whereas the 

materials of middle layer has been replaced by changing 

the order of zirconia and nickel. This shows that the 

frequency has been increased by changing the materials 

of functionally graded layer. The same behaviour of shell 

frequency variations with circumferential waves (n) is 

observed by these four types of cylindrical shells. 
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Table 8: Variation of natural frequencies (Hz) of a 

three-layered clamped-clamped cylindrical 

shell (m=1,p=5,L/R=20,h/R=0.002) 

 

n Type 1 Type 2 Type 3 Type 4 

1 28.7544 30.0925 29.2850 30.2737 

2 9.6851 10.1040 9.8754 10.1878 

3 5.4815 5.7173 5.8350 6.0336 

4 6.2720 6.6812 7.1909 7.5488 

5 9.3122 10.0285 10.8915 11.5040 

 

Table 9: Variation of natural frequencies (Hz) of a 

three-layered clamped-simply supported 

cylindrical shell (m=1,p=5,L/R=20,h/R=0.002 ) 

 

n Type 1 Type 2 Type 3 Type 4 

1 20.3824 21.3296 20.7566 21.4563 

2 6.8050 7.0906 6.9508 7.1653 

3 4.3715 4.5802 4.7682 4.9502 

4 5.9620 6.3855 6.9135 7.2803 

5 9.2175 9.9470 10.8078 11.4283 

 

Table 10: Variation of natural frequencies (Hz) of a 

three-layered clamped-free cylindrical shell 

(m=1,p=5,L/R=20,h/R=0.002 ) 

 

n Type 1 Type 2 Type 3 Type 4 

1 3.4048 3.5566 3.4657 3.5781 

2 1.5151 1.5837 1.6558 1.7167 

3 2.9916 3.2221 3.5009 3.6980 

4 5.6472 6.1099 6.6364 7.0270 

5 9.1169 9.8738 10.7193 11.3562 

 

 In Table 11, variations of natural frequencies for 

Type 1 for two configurations with respect to thickness of 

layers, are shown against circumferential wave numbers 

(n). 

 

Table 11: Variation of natural frequencies (Hz) of a 

three-layered clamped-clamped cylindrical 

shell for two configurations with respect to 

thickness of shell layers 

(m=1,p=5,L/R=20,h/R=0.002 ) 

 

 n Type 1 

(h/3) 

Type 1 

(h/4) 

% Difference  

1 28.7544 28.6163 0.4803 

2 9.6851 9.6514 0.3480 

3 5.4815 5.4589 0.4123 

4 6.2720 6.1775 1.5067 

5 9.3122 9.1194 2.0704 

 

 It is seen from the Table 11, by decreasing the 

thickness of the middle functionally graded layer, the 

frequencies diminish. 

Frequency analysis of cylindrical shells with elastic 

foundations: Fig.2 (a)-(c) represent variations of natural 

frequencies (Hz)  for three layered cylindrical shells for  

C - C, C - SS and C - F edge conditions respectively with 

elastic foundations, i.e.,        ,         N-m. 

The middle layer is functionally graded material. For 

both Types 1 and 2 of the cylindrical shells, the 

frequencies increase considerably by adding the elastic 

foundations, i.e., Pasternak and Winkler models. Also, 

the values of natural frequencies increase gradually 

against circumferential wave modes ( n ). The minimum 

frequency is associated with n=1. This shows that the 

shell vibration is similar to that of beam type for these 

boundary conditions. 

 

(a) 
 

(b) 
 

(c) 

Fig. 2 Variations of natural frequencies (Hz) for three layered (a) C-C (b) C-SS (c) C-F cylindrical shells, (  

      N-m,         N-m,  
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 In Table 12, natural frequencies (Hz) for C - C, 

C - SS and C - F three layered cylindrical shells are listed 

for Type 1,2,3,4 cylindrical shells. The shells are based 

on the Pasternak and Winkler foundations. The values of 

the shell frequencies show considerable increments by 

inducting the elastic moduli. The Type 2 has the highest 

frequency, followed by Type 1, Type 4, and Type 3. This 

also exhibits the effects of material thickness of the layers 

forming cylindrical shell. The clamped-free cylindrical 

shells have the lowest frequency.  

Table 12:  Variation of natural frequencies (Hz) of a clamped-clamped (C-C), clamped-simply supported (C-SS) 

and clamped-free (C-F) three-layered cylindrical shells on elastic foundations (   ,    ,       m, 

        m,        m,      ,          N-m,          N-m) 

 

Boundary Condition n Type 1 Type 2 Type 3 Type 4 

 1 11913.3 11920.6 10623.8 10640.6 

 2 12308.9 12324.1 11616.7 11637.0 

C-C 3 13399.2 13427.5 13210.3 13233.1 

 4 15186.8 15222.1 15180.8 15206.5 

 5 17318.5 17359.2 17389.3 17418.3 

 1 10124.1 10132.6 9114.88 9129.84 

C-SS 2 10720.9 10738.8 10277.8 10295.9 

 3 12158.3 12185.9 12060.4 12081.1 

 4 14170.7 14203.9 14193.9 14217.8 

 5 16452.6 16491.3 16534.6 16562.1 

 1 5387.34 5398.30 5156.02 5165.03 

C-F 2 7150.12 7166.74 7109.50 7121.60 

 3 9486.56 9508.74 9518.33 9534.16 

 4 12031.8 12059.9 12103.6 12123.6 

 5 14671.4 14705.7 14773.8 14798.2 

 

 Figs. 3(a)-(d), demonstrate the values of natural 

frequencies (Hz) for Types 1,2,3,4 of cylindrical shells 

against the boundary conditions considered to be SS – 

SS, C – SS, C – C and C – F. the elastic foundations are  

    and           N-m. Circumferential wave 

mode n and axial wave mode m are taken both 1. Radius-

to-thickness h/R ratio is assumed to be 0.004. In each 

figure, four frequency curves related to the boundary 

conditions are separated at the start but converge as L/R is 

increased and mingle into a single curve at       . 

 Figs. 4(a)-(d), exhibit variations of natural 

frequencies of cylindrical shells: Type1, Type 2, Type 3 

and Type 4, against thickness-to-radius ratios (h/R) 

assuming circumferential wave mode n and axial wave 

mode m = 1 , based on Pasternak     and Winkler  

          N-m foundations. The length-to-thickness 

ratio is taken as 10. The four cylindrical shells are 

supported by the boundary conditions SS - SS, C - SS, C 

- C and C - F respectively. The four frequency curves are 

separated for each type of cylindrical shell. The 

frequencies for the clamped-clamped cylindrical shell are 

the largest, then followed by the clamped - simply 

supported, simply supported - simply supported and 

clamped – free cylindrical shells. This behaviour is due to 

change in geometric constraints in different edge 

conditions. The above discussion shows that the influence 

of Pasternak and Winkler elastic moduli on the shell 

frequency is pronounced along with the other shell 

parameters. 
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Fig. 3 Variations of natural frequencies (Hz) of (a) Type1 (b) Type 2 (c Type 3 (d) Type 4 cylindrical shells 
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Conclusion: In this study, vibrations of three-layered 

cylindrical shells are investigated under various boundary 

conditions with middle layer is assumed to be of 

functionally graded. Pasternak and Winkler foundations 

are appended in the transverse direction. Wave 

propagation approach is utilized to frame the shell 

frequency equation. The influences of the configurations 

of the cylindrical shells are analyzed with interchange of 

materials of shell layers. It is observed that the value of 

the frequency first decreases, achieves its lowest value 

and then it begins to increase with the circumferential 

wave modes. It is seen that frequencies are influenced 

when materials of inner and outer isotropic layers or 

composition of middle FGM layer of cylindrical shell are 

interchanged. It is further seen that by decreasing the 

thickness of the middle functionally graded layer, the 

frequencies diminish. Moreover, frequencies increase 

considerably by adding the elastic foundations, and the 

influence of Pasternak is more pronounced than Winkler 

on the shell frequency.  
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