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ABSTRACT: Data stream applications are currently emerged as sources of Real Time Data 

Warehouse (RTDW) systems. Existing Extraction, Transformation and Loading (ETL) tools have not 

been crafted for fast, continuous and time-varying data streams. To address this, we have already 

proposed a framework of RTDW to efficiently capture process and load the data streams. This article 

provides technical architecture of Data Streams Processor, the main component of the framework. It 

discusses approximations in detail including data structures and processes to manage fast data streams 

in memory. Moreover, algorithm for approximations is presented and clarified with an example. 

Finally, Data Streams Processor is applied on a real-world case study. (This paper has been extracted 

from the thesis of Fiaz Majeed, 2009) 
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INTRODUCTION 

 A lot of literature has been published on the 

Data Warehouse. The traditional Data Warehouse stores 

consolidated, time variant, read-only and integrated data 

for analysis of decision-makers (Inmon, 1996; Ponniah, 

2001). The data is extracted from source systems in 

batches (daily or weekly). It is then transformed 

(cleansing and merging etc.) to renovate data in the Data 

Warehouse schema format. Finally, data is loaded in the 

Data warehouse from load files using loading utility. 

These mentioned processes are performed by ETL tools 

(Mohanty, 2006). Several diverse processes are involved 

that work co-operatively to make functioning the Data 

Warehouse. Such processes include integration of extract 

files, cleansing, management and controlling module, 

metadata repository, summary table generation, index and 

view materialization, front-end tools and so on (Ponniah, 

2001).  

 With the demand of tactical decision-making, 

active or real-time data warehouse was emerged (Basu, 

2003; Broast, 2002). The data from operational sources is 

loaded simultaneously when new data made available 

(Raden, 2003). With this innovation, tactical decision-

making was provided as well as strategic decision-

making (Vandermay, 2000). Time is important element 

for the Data Warehouse records. Therefore, time 

dimension represents data in different snapshots. Three 

types of time stamps have been defined in (Bruckner and 

Tjoa, 2001) that are valid time, revelation time and load 

time.  

 Among the Real-Time Data Warehouse sources, 

new type of applications is contemporarily introduced 

that generate data streams (Babcock et al., 2002). The 

underlined issue in processing data streams is memory 

management due to large size of their continuous 

elements. To deal with this issue, approximations 

techniques are exploited (Widomet et al., 2003). Several 

approximations building methods include sampling, 

histograms and wavelets (Guha and Koudas, 2002). The 

congressional samples have been utilized for 

approximations in (Acharya et al., 1999). Special kind of 

query processing is necessitated to this special data. 

Therefore, continuous queries have been developed for 

data streams (Babu and Widom, 2001).   

 We proposed a framework for efficiently 

managing data streams in the Real-Time Data Warehouse 

(Majeed et al., 2010). Another work on data streams in 

data warehousing domain is demonstrated that uses Grid 

technology (Tho and Tjoa, 2006). The work in (Tho and 

Tjoa, 2004) employs message queues to securely amass 

the data streams. Like message queues, ETL queues have 

also been exercised for data streams storage (Karakasidis 

et al., 2005). The data streams have fast, continuous and 

time varying characteristics. It is necessary to resolve the 

bursts to synchronize with processing capability.  The 

Token Bucket technique regulates such bursty data 

(Turner, 1986; Tenenbaum, 2003).  

 An algorithm is step by step description of the 

computer program. To assess the correctness of algorithm, 

algorithms analysis is performed (Cormen, 2001). 

MATERIALS AND METHODS 

Technical Representation of Data Streams Processor: 

In (Majeed et al., 2010), we proposed the architecture of 
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Data Streams Processor. As mentioned, bursts are 

initially received in memory after filtering through 

continuous query. It is important to control streams in 

memory and protect them from dropping. Other processes 

can manipulate on regulated streams from memory 

straightforwardly.  The technical architecture of Data 

Streams Processor is depicted in Fig. 1. 
 

 
Fig. 1: Technical architecture of Data Streams 

Processor 

 According to architecture, data streams are 

driven by the source application to Data Streams 

Processor. These are filtered through the Continuous 

Query that throws irrelevant data streams. Afterward, 

bursts of data streams are regulated by the Token Bucket 

which transforms them into balanced shape. Continuous 

Query and Token Bucket are foundation to synchronize 

data streams rate with processor’s service rate.  

 Significantly, memory is organized in a way that 

supports management of heavy data streams in limited 

capacity.  It is partitioned into two buffers named Streams 

Buffer (SBuf) and Approximations Buffer (ABuf) that are 

discussed in detail in subsequent sections.  The algorithm 

of approximations production uses these buffers for in-

memory management of data streams.  

Data Structures and Processes: The input stream is 

organized by different processes working on them. After 

processing, output stream is sent to ODS for joining with 

disk-based data and further transformations. 
  

 

Fig. 2: Technical data structure and processes for 

Data Streams organization  

 Fig. 2 depicts the schematic diagram and data 

structure of approximations executed inside memory. As 

stated, data streams are accessed from the Data Source in 

burst form. To control their flow, bursts are regulated in 

balanced shape by Token Bucket method.  Reader can 

clearly see the significance of Token Bucket positioned 

between the Continuous Query and memory. Where it 

provides regular shape to the traffic, it also saves streams 

from dropping as well support management to limited 

memory. According to Fig. 2, the available memory is 

partitioned into two buffers, the Streams Buffer (SBuf) 

and Approximations Buffer (ABuf). From now, we 

assume incoming streams as S and tuples in S as w. The 

SBuf stores incoming stream tuples w. In the other hand, 

ABuf is allocated for approximations storage generated 

from overloaded w tuples.  A threshold tlimit is set in 

SBuf to signal overloading of w tuples. The threshold is 

set on memory according to percentage of memory 

decided by administrator like 80%. While a pointer p is 

being used to keep up the sequence of S streams for 

subsequent processing.  

 The processing of stream buffering is carried out 

with following steps: 

(1) Once passing from the Token Bucket, w tuples of 

stream S are initially placed in SBuf. 

(2) At some moment, w tuples exceed tlimit due to 

bursts of Stream S and simultaneously an alert 

triggers the approximations procedure. 

(3) The approximations procedure then picks up a 

population n from overloaded w tuples to fabricate 

approximate answer. 

(4) Right after taking population n, approximations 

procedure places a pointer p plus timestamp t in 

first slot of SBuf where first w tuple of population 

picked. The pointer p points to the first slot of 

available space in ABuf for residing 

approximations by procedure.  

(5) Finally, sorting is applied periodically to maintain 

the ordering and utilizing free space. 

 The timestamp t associated with each tuple w 

and pointer p has been used to maintain the sequence of 

w tuples in SBuf for subsequent processing by the Data 

Streams Processor. Hence, sorting algorithm orders tuples 

w on the basis of timestamp t. It also eliminates free 

spaces generated as a result of First in First out (FIFO) 

approach adopted by the Data Streams Processor. This 

way, possible capacity is reserved in SBuf for new 

arriving tuples w. Using FIFO approach, incoming 

Streams S are added successive to last arrived tuple w 

whereas Streams Processor utilizes old most tuple w 

earliest. 

 The user demands for quick results to make up-

to-date strategic decision making. Therefore, 

approximations play an important role in this situation. 

The data warehouse store summaries as well as detailed 

data. It provides results of queries on the basis of already 
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calculated summaries from detailed data with minimal 

delay. In addition, query profiles are also stored in the 

data warehouse. The query processor evaluates profiles 

and summaries for achieving fast results of a query.  

Algorithm: Generate Approximations 

Input: t tuples above tlimit in SBuf 

Output: Approximated tuples in ABuf 

Parameters: tlimit threshold in SBuf, n size of population 

Method: 

1.  While (Length (SBuf) ≥ tlimit) 

2.  Read population n of t tuples from SBuf- above tlimit 

3. Add pointer p in SBuf refer to population ABuf 

4. Approximate (n, ABuf) 

5. Add approximation result in ABuf pointed by p     

6.  End While 

Fig. 3: Approximations algorithm 

 In Fig. 3, while loop in line 1 tests the threshold. 

It returns true as soon as data streams keep on exceeding 

from threshold. Length function with parameter SBuf 

count data streams currently in SBuf. When length of 

SBuf becomes less than tlimit, control exits from the loop. 

Data Streams Processor in line 2 reads population of n 

tuples from SBuf. In line 3, a pointer holding address of 

available free location in ABuf is positioned at the first 

slot of SBuf where population was picked. While line 4 

contains approximations procedure that takes population 

of n tuples and ABuf as parameters. Finally, 

approximations procedure put results into ABuf in line 5. 

Data Structure in action: The approximations are 

continually built after exceeding threshold point in 

memory. Fig. 4 demonstrates the production of 

approximations at different time instants. 

 

 

Fig. 4: Execution of memory processes in different 

intervals 

The operation of approximations algorithm in different 

instants is illustrated in detail. This can be described in 

following steps.   

(1) At time t=0, w’s from S are stored in SBuf. ABuf is 

empty this instant.  

(2) At time t=1, w’s exceed tlimit in SBuf. Instantly 

approximations alert triggers the approximations 

procedure.    

(3) At time t=2, Approximations procedure picks up n 

w’s from SBuf. 

The concept of approximations has been clarified in Fig. 

4. It is worth claiming that logical partitions of memory 

into separate buffers eliminate ambiguities. Hence 

memory is used optimizely and resolves the issue of 

limited memory.   

The Token Bucket sends w’s towards memory in regular 

rate. These w’s in turn are used by Data Streams 

Processor with comparable rate. As a result, Data Streams 

Processor harmonizes with the pace of incoming streams. 

Moreover, incoming streams are reasonably consumed by 

limited memory and avoided from descend.  

The w’s whose processing is completed, leaves the 

memory and transmitted to ODS for join with disk 

relations and further transformations. The approximations 

procedure continues until exceeding w’s reach below 

tlimit. 

RESULTS AND DISCUSSION 

 In this section, we are applying a case study 

(Raden, 2003) on the proposed real time data warehouse 

architecture. The Gately Company has following 

analytical needs to perform on their real-time data 

warehouse (The quoted paragraph below states the 

requirements that should be fulfilled from real-time data 

warehouse).  

 “Gately is a chain of web stores, selling 

affordable products with high-quality, service and 

integrity. Their primary objective is to obtain numerical 

data on the return on investment of each of their internet 

advertisements, especially their Google Adwords 

advertisements, to determine which ads were costing 

more than they brought in. A secondary objective was to 

create a system which could report which items were 

ordered through the website, and how often, and how 

much was spent on them”. 

 Gately website generates data streams 

maintained in the server log. They have great number of 

customers buy their products. The customers visit Gately 

website for purchasing offered products. As they visit the 

website through Adwords or directly, the information of 

their clicking history like ordered products etc. are stored 

in web server log. This information is required by the 

RTDW for analysis demanded by the company. A sample 

log is demonstrated in Table 1: 
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Table 1: Web server log file records 

 

Source of Request 

(Host) 

Bytes  Referring Page Date and Time of 

Request Browser 

Page Requested (HTTP 

protocol) Platform 

PID OID CID 

Pm471-

46.dialip.mich.net 

1449 "http://www.gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

[24/May/2009:19:13:44 -

0400] 

"GET /images/tagline.gif 

HTTP/1.0" 

P131  C101 

Pm471-

46.dialip.mich.net 

10659 "http://www.gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

[24/May/2009:19:13:44 -

0400] 

"GET /images/bkgrnd.jpg 

HTTP/1.0" 

P131 O142 C101 

Pm471-

46.dialip.mich.net 

280 "http://www. gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

[24/May/2009:19:13:44 -

0400] 

"GET /images/yellow_bit.gif 

HTTP/1.0" 

P131  C101 

Pm471-

46.dialip.mich.net 

1292 "http://www. gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

24/May/2009:19:13:44 -

0400] 

"GET /images/TE_logo.gif 

HTTP/1.0" 

P131  C101 

Pm471-

46.dialip.mich.net 

714 "http://www. gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

[24/May/2009:19:13:52 -

0400] 

"GET /images/site_map.gif 

HTTP/1.0" 

P131  C101 

Pm471-

46.dialip.mich.net 

43 "http://www. gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

[24/May/2009:19:13:53 -

0400] 

"GET /images/home_00.gif 

HTTP/1.0" 

P131  C101 

Pm471-

46.dialip.mich.net 

43 "http://www. gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

[24/May/2009:19:13:53 -

0400] 

"GET 

/images/use_eval_hbut.gif 

HTTP/1.0" 

P131  C101 

Pm471-

46.dialip.mich.net 

747 "http://www. gately.com/" 

"Mozilla/4.51 [en] (Win98; I)" 

[24/May/2009:19:13:55 -

0400] 

"GET 

/images/use_eval_hbut.gif 

HTTP/1.0" 

P131  C101 

Table 2: Discarded records by continuous query 

 

Source of 

Request (Host) 

Bytes  Referring Page Date and Time of 

Request Browser 

Page Requested (HTTP 

protocol) Platform 

PID OID CID 

Pm471-

46.dialip.mich.net 

43 "http://www. 

gately.com/" 

"Mozilla/4.51 [en] 

(Win98; I)" 

[24/May/2009:19:13:53 

-0400] 

"GET 

/images/home_00.gif 

HTTP/1.0" 

P131  C101 

Pm471-

46.dialip.mich.net 

43 "http://www. 

gately.com/" 

"Mozilla/4.51 [en] 

(Win98; I)" 

[24/May/2009:19:13:53 

-0400] 

"GET 

/images/use_eval_hbut.gif 

HTTP/1.0" 

P131  C101 

 

 Such records in the log file are created in huge 

quantity in a unit time t. We are going to apply the 

sample log file on each component of Data Streams 

Processor. 

Continuous queries: Click streams are reached to the 

Data Streams Processor. On first step, the Data Streams 

Processor passes them through continuous query. The 

Continuous query here is used to filter click streams. It 

discards irrelevant data streams and pass only required 

data streams to the next process. For example, if click on 

a link by the customer generates number of bytes less 

than 50, it means he/she does not perform any substantial 

activity. The query in Fig. 5 discards such records from 

coming data streams: 

 

 

 

 

 

Fig. 5: Continuous Query 

 So the following records of sample log file 

presented in Table 2 are discarded by this continuous 

query. 

Token Bucket: Before applying any further process, the 

irregular streams are necessary to be converted into a 

regular flow so that the Data Streams Processor can 

easily synchronize with the pace of data streams. The 

token bucket is used in Data Streams Processor to convert 

data streams into a regular flow and smooth out bursts. In 

the algorithm of Token Bucket, the bucket holds tokens 

generated on clock ticks with the rate of one token every 

ΔT sec. With each token, a specified number of streams, 

say 10, are flowed for further processing. The algorithm 

is implemented in following way: 

 A variable is used as a counter which is 

incremented on each clock tick and decremented on 

transmitting specified number of data streams against 

each token. The result of using this technique in the 

architecture is regular flow of data streams. 

SELECT * 

FROM LoginInfo L 

WHERE L.bytes < 50 
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 Let data streaming application sends a burst of 

5000 records per second in particular interval. Whereas 

the Data Streams Processor is capable of processing 3000 

records per second. In this situation, Token Bucket 

increases passing of streams per token to approximate 

output rate with input rate. Consequently, burst is 

smoothes out and memory processes take enough time to 

manage streams. 

Data Streams Approximations: After passing from the 

continuous query and the token bucket, click streams are 

required to be stored in memory. As discussed in earlier 

sections that memory cannot keep all data streams at each 

time interval. The data streams are frequently generated 

in burst form. According to the RTDW architecture, 

increasing rate of data streams from specified threshold 

of memory is approximated. It use approximations 

algorithm for summary results based on an efficient 

sampling technique.   

 Assume that click streams in memory are 

exceeding from the specified threshold limit. The extra 

records are 1000 from which a sample of 100 records is 

taken. The continuous query to generate approximate 

results is demonstrated in Fig. 6: 

 

 

 

 

 

Fig. 6: Query for approximations 

It randomly selects a sample of 100 records from 

the population of 1000 records. 

 

Table 3: Order of columns in log file 

 

Source 

of 

Request 

(Host) 

Bytes  Referring 

Page 

Date and 

Time of 

Request 

Browser 

Page 

Requested 

(HTTP 

protocol) 

Platform 

PID OID CID 

 

 The order of columns after conversion relevant 

to target table: 

 

Table 4: Order of columns in ODS 
 

OID P 

ID 

C 

ID 

Source 

of 

Request 

(Host) 

Bytes Referring 

Page 

Date and 

Time of 

Request 

Browser 

Page 

Requested 

(HTTP 

protocol) 

Platform 

 

Schema Reconciliation: The next step is to change 

format of click streams relevant to the format of ODS. 

Log file in Table 1 is in relational format. It is necessary 

to convert that in the format of target schema. Frequently 

ODS is implemented in relational structure. The degree, 

order of columns and field lengths etc. are necessary to 

be changed according to the target tables. For Example,  

The current order of columns in the log file is: 

 The columns PID, OID and CID in Table 3 are 

switched at beginning in Table 4. 
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Conclusion: In this work, framework of real time data 

warehouse is technically analyzed. The theoretical 

foundations laid in the work (Majeed et al., 2010) are 

augmented on technical bases. For this, in-memory 

approximations are discussed with sufficient detail. 

During annotation of approximations algorithm, the 

operation of approximations process in memory at 

different time instants is also clarified. Moreover, the 

technical data structure for approximations production is 

discussed for implementation point of view.  
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