
Pakistan Journal of Science (Vol. 63 No. 2 June, 2011)

 98

DATA STREAMS MANAGEMENT IN THE REAL-TIME DATA WAREHOUSE:

FUNCTIONING OF THE DATA STREAMS PROCESSOR

M. Shoaib, F. Majeed, Shazia, K. Kalsoom, S. Majid
**

 and S. Mahmood*

Dept. of CS & E, University of Engineering & Technology, Lahore, *Dept. of CS, CIIT Lahore, Pakistan
**

Department of Computer Science , LCWU, Pakistan

Corresponding author email: shoaib_uet@hotmail.com

ABSTRACT: Data stream applications are currently emerged as sources of Real Time Data

Warehouse (RTDW) systems. Existing Extraction, Transformation and Loading (ETL) tools have not

been crafted for fast, continuous and time-varying data streams. To address this, we have already

proposed a framework of RTDW to efficiently capture process and load the data streams. This article

provides technical architecture of Data Streams Processor, the main component of the framework. It

discusses approximations in detail including data structures and processes to manage fast data streams

in memory. Moreover, algorithm for approximations is presented and clarified with an example.

Finally, Data Streams Processor is applied on a real-world case study. (This paper has been extracted

from the thesis of Fiaz Majeed, 2009)

Key words: Real-time Data Warehouse; data stream; strategic decision-making; tactical decision-making; Data Streams

Processor

INTRODUCTION

 A lot of literature has been published on the

Data Warehouse. The traditional Data Warehouse stores

consolidated, time variant, read-only and integrated data

for analysis of decision-makers (Inmon, 1996; Ponniah,

2001). The data is extracted from source systems in

batches (daily or weekly). It is then transformed

(cleansing and merging etc.) to renovate data in the Data

Warehouse schema format. Finally, data is loaded in the

Data warehouse from load files using loading utility.

These mentioned processes are performed by ETL tools

(Mohanty, 2006). Several diverse processes are involved

that work co-operatively to make functioning the Data

Warehouse. Such processes include integration of extract

files, cleansing, management and controlling module,

metadata repository, summary table generation, index and

view materialization, front-end tools and so on (Ponniah,

2001).

 With the demand of tactical decision-making,

active or real-time data warehouse was emerged (Basu,

2003; Broast, 2002). The data from operational sources is

loaded simultaneously when new data made available

(Raden, 2003). With this innovation, tactical decision-

making was provided as well as strategic decision-

making (Vandermay, 2000). Time is important element

for the Data Warehouse records. Therefore, time

dimension represents data in different snapshots. Three

types of time stamps have been defined in (Bruckner and

Tjoa, 2001) that are valid time, revelation time and load

time.

 Among the Real-Time Data Warehouse sources,

new type of applications is contemporarily introduced

that generate data streams (Babcock et al., 2002). The

underlined issue in processing data streams is memory

management due to large size of their continuous

elements. To deal with this issue, approximations

techniques are exploited (Widomet et al., 2003). Several

approximations building methods include sampling,

histograms and wavelets (Guha and Koudas, 2002). The

congressional samples have been utilized for

approximations in (Acharya et al., 1999). Special kind of

query processing is necessitated to this special data.

Therefore, continuous queries have been developed for

data streams (Babu and Widom, 2001).

 We proposed a framework for efficiently

managing data streams in the Real-Time Data Warehouse

(Majeed et al., 2010). Another work on data streams in

data warehousing domain is demonstrated that uses Grid

technology (Tho and Tjoa, 2006). The work in (Tho and

Tjoa, 2004) employs message queues to securely amass

the data streams. Like message queues, ETL queues have

also been exercised for data streams storage (Karakasidis

et al., 2005). The data streams have fast, continuous and

time varying characteristics. It is necessary to resolve the

bursts to synchronize with processing capability. The

Token Bucket technique regulates such bursty data

(Turner, 1986; Tenenbaum, 2003).

 An algorithm is step by step description of the

computer program. To assess the correctness of algorithm,

algorithms analysis is performed (Cormen, 2001).

MATERIALS AND METHODS

Technical Representation of Data Streams Processor:

In (Majeed et al., 2010), we proposed the architecture of

Pakistan Journal of Science (Vol. 63 No. 2 June, 2011)

 99

Data Streams Processor. As mentioned, bursts are

initially received in memory after filtering through

continuous query. It is important to control streams in

memory and protect them from dropping. Other processes

can manipulate on regulated streams from memory

straightforwardly. The technical architecture of Data

Streams Processor is depicted in Fig. 1.

Fig. 1: Technical architecture of Data Streams

Processor

 According to architecture, data streams are

driven by the source application to Data Streams

Processor. These are filtered through the Continuous

Query that throws irrelevant data streams. Afterward,

bursts of data streams are regulated by the Token Bucket

which transforms them into balanced shape. Continuous

Query and Token Bucket are foundation to synchronize

data streams rate with processor’s service rate.

 Significantly, memory is organized in a way that

supports management of heavy data streams in limited

capacity. It is partitioned into two buffers named Streams

Buffer (SBuf) and Approximations Buffer (ABuf) that are

discussed in detail in subsequent sections. The algorithm

of approximations production uses these buffers for in-

memory management of data streams.

Data Structures and Processes: The input stream is

organized by different processes working on them. After

processing, output stream is sent to ODS for joining with

disk-based data and further transformations.

Fig. 2: Technical data structure and processes for

Data Streams organization

 Fig. 2 depicts the schematic diagram and data

structure of approximations executed inside memory. As

stated, data streams are accessed from the Data Source in

burst form. To control their flow, bursts are regulated in

balanced shape by Token Bucket method. Reader can

clearly see the significance of Token Bucket positioned

between the Continuous Query and memory. Where it

provides regular shape to the traffic, it also saves streams

from dropping as well support management to limited

memory. According to Fig. 2, the available memory is

partitioned into two buffers, the Streams Buffer (SBuf)

and Approximations Buffer (ABuf). From now, we

assume incoming streams as S and tuples in S as w. The

SBuf stores incoming stream tuples w. In the other hand,

ABuf is allocated for approximations storage generated

from overloaded w tuples. A threshold tlimit is set in

SBuf to signal overloading of w tuples. The threshold is

set on memory according to percentage of memory

decided by administrator like 80%. While a pointer p is

being used to keep up the sequence of S streams for

subsequent processing.

 The processing of stream buffering is carried out

with following steps:

(1) Once passing from the Token Bucket, w tuples of

stream S are initially placed in SBuf.

(2) At some moment, w tuples exceed tlimit due to

bursts of Stream S and simultaneously an alert

triggers the approximations procedure.

(3) The approximations procedure then picks up a

population n from overloaded w tuples to fabricate

approximate answer.

(4) Right after taking population n, approximations

procedure places a pointer p plus timestamp t in

first slot of SBuf where first w tuple of population

picked. The pointer p points to the first slot of

available space in ABuf for residing

approximations by procedure.

(5) Finally, sorting is applied periodically to maintain

the ordering and utilizing free space.

 The timestamp t associated with each tuple w

and pointer p has been used to maintain the sequence of

w tuples in SBuf for subsequent processing by the Data

Streams Processor. Hence, sorting algorithm orders tuples

w on the basis of timestamp t. It also eliminates free

spaces generated as a result of First in First out (FIFO)

approach adopted by the Data Streams Processor. This

way, possible capacity is reserved in SBuf for new

arriving tuples w. Using FIFO approach, incoming

Streams S are added successive to last arrived tuple w

whereas Streams Processor utilizes old most tuple w

earliest.

 The user demands for quick results to make up-

to-date strategic decision making. Therefore,

approximations play an important role in this situation.

The data warehouse store summaries as well as detailed

data. It provides results of queries on the basis of already

Pakistan Journal of Science (Vol. 63 No. 2 June, 2011)

 100

calculated summaries from detailed data with minimal

delay. In addition, query profiles are also stored in the

data warehouse. The query processor evaluates profiles

and summaries for achieving fast results of a query.

Algorithm: Generate Approximations

Input: t tuples above tlimit in SBuf

Output: Approximated tuples in ABuf

Parameters: tlimit threshold in SBuf, n size of population

Method:

1. While (Length (SBuf) ≥ tlimit)

2. Read population n of t tuples from SBuf- above tlimit

3. Add pointer p in SBuf refer to population ABuf

4. Approximate (n, ABuf)

5. Add approximation result in ABuf pointed by p

6. End While

Fig. 3: Approximations algorithm

 In Fig. 3, while loop in line 1 tests the threshold.

It returns true as soon as data streams keep on exceeding

from threshold. Length function with parameter SBuf

count data streams currently in SBuf. When length of

SBuf becomes less than tlimit, control exits from the loop.

Data Streams Processor in line 2 reads population of n

tuples from SBuf. In line 3, a pointer holding address of

available free location in ABuf is positioned at the first

slot of SBuf where population was picked. While line 4

contains approximations procedure that takes population

of n tuples and ABuf as parameters. Finally,

approximations procedure put results into ABuf in line 5.

Data Structure in action: The approximations are

continually built after exceeding threshold point in

memory. Fig. 4 demonstrates the production of

approximations at different time instants.

Fig. 4: Execution of memory processes in different

intervals

The operation of approximations algorithm in different

instants is illustrated in detail. This can be described in

following steps.

(1) At time t=0, w’s from S are stored in SBuf. ABuf is

empty this instant.

(2) At time t=1, w’s exceed tlimit in SBuf. Instantly

approximations alert triggers the approximations

procedure.

(3) At time t=2, Approximations procedure picks up n

w’s from SBuf.

The concept of approximations has been clarified in Fig.

4. It is worth claiming that logical partitions of memory

into separate buffers eliminate ambiguities. Hence

memory is used optimizely and resolves the issue of

limited memory.

The Token Bucket sends w’s towards memory in regular

rate. These w’s in turn are used by Data Streams

Processor with comparable rate. As a result, Data Streams

Processor harmonizes with the pace of incoming streams.

Moreover, incoming streams are reasonably consumed by

limited memory and avoided from descend.

The w’s whose processing is completed, leaves the

memory and transmitted to ODS for join with disk

relations and further transformations. The approximations

procedure continues until exceeding w’s reach below

tlimit.

RESULTS AND DISCUSSION

 In this section, we are applying a case study

(Raden, 2003) on the proposed real time data warehouse

architecture. The Gately Company has following

analytical needs to perform on their real-time data

warehouse (The quoted paragraph below states the

requirements that should be fulfilled from real-time data

warehouse).

 “Gately is a chain of web stores, selling

affordable products with high-quality, service and

integrity. Their primary objective is to obtain numerical

data on the return on investment of each of their internet

advertisements, especially their Google Adwords

advertisements, to determine which ads were costing

more than they brought in. A secondary objective was to

create a system which could report which items were

ordered through the website, and how often, and how

much was spent on them”.

 Gately website generates data streams

maintained in the server log. They have great number of

customers buy their products. The customers visit Gately

website for purchasing offered products. As they visit the

website through Adwords or directly, the information of

their clicking history like ordered products etc. are stored

in web server log. This information is required by the

RTDW for analysis demanded by the company. A sample

log is demonstrated in Table 1:

Pakistan Journal of Science (Vol. 63 No. 2 June, 2011)

 101

Table 1: Web server log file records

Source of Request

(Host)

Bytes Referring Page Date and Time of

Request Browser

Page Requested (HTTP

protocol) Platform

PID OID CID

Pm471-

46.dialip.mich.net

1449 "http://www.gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

[24/May/2009:19:13:44 -

0400]

"GET /images/tagline.gif

HTTP/1.0"

P131 C101

Pm471-

46.dialip.mich.net

10659 "http://www.gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

[24/May/2009:19:13:44 -

0400]

"GET /images/bkgrnd.jpg

HTTP/1.0"

P131 O142 C101

Pm471-

46.dialip.mich.net

280 "http://www. gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

[24/May/2009:19:13:44 -

0400]

"GET /images/yellow_bit.gif

HTTP/1.0"

P131 C101

Pm471-

46.dialip.mich.net

1292 "http://www. gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

24/May/2009:19:13:44 -

0400]

"GET /images/TE_logo.gif

HTTP/1.0"

P131 C101

Pm471-

46.dialip.mich.net

714 "http://www. gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

[24/May/2009:19:13:52 -

0400]

"GET /images/site_map.gif

HTTP/1.0"

P131 C101

Pm471-

46.dialip.mich.net

43 "http://www. gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

[24/May/2009:19:13:53 -

0400]

"GET /images/home_00.gif

HTTP/1.0"

P131 C101

Pm471-

46.dialip.mich.net

43 "http://www. gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

[24/May/2009:19:13:53 -

0400]

"GET

/images/use_eval_hbut.gif

HTTP/1.0"

P131 C101

Pm471-

46.dialip.mich.net

747 "http://www. gately.com/"

"Mozilla/4.51 [en] (Win98; I)"

[24/May/2009:19:13:55 -

0400]

"GET

/images/use_eval_hbut.gif

HTTP/1.0"

P131 C101

Table 2: Discarded records by continuous query

Source of

Request (Host)

Bytes Referring Page Date and Time of

Request Browser

Page Requested (HTTP

protocol) Platform

PID OID CID

Pm471-

46.dialip.mich.net

43 "http://www.

gately.com/"

"Mozilla/4.51 [en]

(Win98; I)"

[24/May/2009:19:13:53

-0400]

"GET

/images/home_00.gif

HTTP/1.0"

P131 C101

Pm471-

46.dialip.mich.net

43 "http://www.

gately.com/"

"Mozilla/4.51 [en]

(Win98; I)"

[24/May/2009:19:13:53

-0400]

"GET

/images/use_eval_hbut.gif

HTTP/1.0"

P131 C101

 Such records in the log file are created in huge

quantity in a unit time t. We are going to apply the

sample log file on each component of Data Streams

Processor.

Continuous queries: Click streams are reached to the

Data Streams Processor. On first step, the Data Streams

Processor passes them through continuous query. The

Continuous query here is used to filter click streams. It

discards irrelevant data streams and pass only required

data streams to the next process. For example, if click on

a link by the customer generates number of bytes less

than 50, it means he/she does not perform any substantial

activity. The query in Fig. 5 discards such records from

coming data streams:

Fig. 5: Continuous Query

 So the following records of sample log file

presented in Table 2 are discarded by this continuous

query.

Token Bucket: Before applying any further process, the

irregular streams are necessary to be converted into a

regular flow so that the Data Streams Processor can

easily synchronize with the pace of data streams. The

token bucket is used in Data Streams Processor to convert

data streams into a regular flow and smooth out bursts. In

the algorithm of Token Bucket, the bucket holds tokens

generated on clock ticks with the rate of one token every

ΔT sec. With each token, a specified number of streams,

say 10, are flowed for further processing. The algorithm

is implemented in following way:

 A variable is used as a counter which is

incremented on each clock tick and decremented on

transmitting specified number of data streams against

each token. The result of using this technique in the

architecture is regular flow of data streams.

SELECT *

FROM LoginInfo L

WHERE L.bytes < 50

Pakistan Journal of Science (Vol. 63 No. 2 June, 2011)

 102

 Let data streaming application sends a burst of

5000 records per second in particular interval. Whereas

the Data Streams Processor is capable of processing 3000

records per second. In this situation, Token Bucket

increases passing of streams per token to approximate

output rate with input rate. Consequently, burst is

smoothes out and memory processes take enough time to

manage streams.

Data Streams Approximations: After passing from the

continuous query and the token bucket, click streams are

required to be stored in memory. As discussed in earlier

sections that memory cannot keep all data streams at each

time interval. The data streams are frequently generated

in burst form. According to the RTDW architecture,

increasing rate of data streams from specified threshold

of memory is approximated. It use approximations

algorithm for summary results based on an efficient

sampling technique.

 Assume that click streams in memory are

exceeding from the specified threshold limit. The extra

records are 1000 from which a sample of 100 records is

taken. The continuous query to generate approximate

results is demonstrated in Fig. 6:

Fig. 6: Query for approximations

It randomly selects a sample of 100 records from

the population of 1000 records.

Table 3: Order of columns in log file

Source

of

Request

(Host)

Bytes Referring

Page

Date and

Time of

Request

Browser

Page

Requested

(HTTP

protocol)

Platform

PID OID CID

 The order of columns after conversion relevant

to target table:

Table 4: Order of columns in ODS

OID P

ID

C

ID

Source

of

Request

(Host)

Bytes Referring

Page

Date and

Time of

Request

Browser

Page

Requested

(HTTP

protocol)

Platform

Schema Reconciliation: The next step is to change

format of click streams relevant to the format of ODS.

Log file in Table 1 is in relational format. It is necessary

to convert that in the format of target schema. Frequently

ODS is implemented in relational structure. The degree,

order of columns and field lengths etc. are necessary to

be changed according to the target tables. For Example,

The current order of columns in the log file is:

 The columns PID, OID and CID in Table 3 are

switched at beginning in Table 4.

Acknowledgement: This article is extended part of Fiaz

Majeed’
s
 (author) MS thesis done under the supervision

of Mr. Sohaib Mahmood in CIIT Lahore, Pakistan. A

paper titled “Efficient Data Streams Processing in the

Real-Time Data Warehouse” has already been published

in IEEE ICCSIT.

Conclusion: In this work, framework of real time data

warehouse is technically analyzed. The theoretical

foundations laid in the work (Majeed et al., 2010) are

augmented on technical bases. For this, in-memory

approximations are discussed with sufficient detail.

During annotation of approximations algorithm, the

operation of approximations process in memory at

different time instants is also clarified. Moreover, the

technical data structure for approximations production is

discussed for implementation point of view.

REFERENCES

Acharya, S., P. B. Gibbons, and V. Poosala,

Congressional samples for approximate

answering of group by queries, In Proceedings

of the special interest group on management of

data, 487-498 (1999).

Babcock, B., S. Babu, M. Datar, R. Motwani, and J.

Widom, Models and issues in data stream

systems, In Proceedings of the 2002 ACM Symp

on Principles of Database Systems, 1-16 (2002).

Babu, S., and J. Widom, Continuous queries over data

streams, SIGMOD Record, 30(3): 109-120

(2001).

Basu, R. Challenges of real-time data warehousing,

Information Management Special Reports

(2003).

Brobst, S. Delivery of extreme data freshness with active

data warehousing, Journal of data warehousing,

7(2): 4-9 (2002).

Bruckner, R., and A. M. Tjoa, Managing time

consistency for active data warehouse

environments, In Proceedings of the 3
rd

 intl.

conference on data warehousing and knowledge

discovery, 254-263 (2001).

Cormen, T. H. Introduction of Algorithms, Second

Edition, McGraw-Hill (2001).

Guha, S., and N. Koudas, Approximating a data stream

for querying and estimation: Algorithms and

performance evaluation, In Proceedings of the

data engineering, 567-576 (2002).

SAMPLE 100 OF

SELECT*

FROM LogInfo

Pakistan Journal of Science (Vol. 63 No. 2 June, 2011)

 103

Inmon, W.H. Building the data warehouse. New York:

Wiley (1996).

Karakasidis, A., P. Vassiliadis, and E. Pitoura, ETL

queues for active data warehousing, In

Proceedings of the Annual MIT IQ Industry

Symposium (IQIS), 28-39 (2005).

Majeed, F., M. S. Sohaib, and M. Iqbal, Efficient Data

Streams Processing in the Real-Time Data

Warehouse, In Proceedings of 3
rd

 IEEE Intl.

Conference on Computer Science and

Information Technology (ICCSIT), 57-61

(2010).

Mohanty, M. Data Warehousing: Design, development

and best practices, New Delhi: Mcgraw hill

(2006).

Motwani, R., J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein,

and R. Varma, Query Processing,

approximation, and resource management in a

data stream management system, In Proceedings

of the Conference on Innovative Data Systems

Research (2003).

Ponniah, P. Data warehousing fundamentals, New Jersey:

Edison (2001).

Raden, N. Exploring the business imperative of real-time

analytics, Teradata White Paper, 1-14 (2003).

Tho, N. M., and A. M. Tjoa, Zero latency data

warehousing for heterogeneous data sources and

continuous data streams, In Proceedings of the

5
th

 intl. conference on information integration,

web applications and services, Jakarta,

Indonesia (2004).

Tho, N. M., and A. M. Tjoa, Zero-latency data

warehousing (ZLDWH): the state-of-the-art and

experimental implementation approaches, In

Proceedings of 4
th

 IEEE Intl. conference on

computer science research; innovation and

vision for the future (RIVF), 166-175 (2006).

Tenenbaum, A. S. Computer Networks, Fourth edition,

Prentice Hall PTR (2003).

Turner, J. S. New directions in communications (or

which way to the information age), IEEE

Commun. Magazine, 24: 8-15 (1986).

Vandermay, J. Considerations for building a real-time

data warehouse, Data-Miror Corporation White

Paper (2000).

