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ABSTRACT: The objective of this study was to compare the Bayes estimates of the parameter of 
the time-to-failure model based on informative and non-informative priors. The Gamma distribution 
wasassumed  as  the  informative  conjugate  prior  while  the  Jeffreys  prior  was  assumed  as  an 
uninformative prior. The comparison is based on the posterior variance, the Bayesian interval estimate, 
the coefficient of skewness of the posterior distribution and the Bayes posterior risk. 
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INTRODUCTION

The Bayesian approach has several  advantages 
over the classical approach because it can utilize the prior 
information  in  a  formal  way,  satisfies  the  axioms  of 
coherence  and  utilize  decision  theory.  This  study 
provides a Bayesian analysis of the time-to-failure model 
using informative (Gamma) and uninformative (Jeffreys) 
priors.  A  method  is  also  given  to  elicit  the 
hyperparameters of the prior density for the parameters of 
the  said  model.  Kadane  et  al.  (1980),  Chaloner  and 
Duncan  (1983),  Gavasakar  (1988),  Aslam  (2003),  Al-
Awadhi  and  Gartwaite  (1998),  Kadane  and  Wolfson 
(1998)  and  Hahn  (2006)  discussed  prior  elicitation 
methods  including  the  one  based  on  prior  predictive 
distribution. The comparison of the informative and non-
informative  priors  with  respect  to  posterior  variance, 
Bayesian  interval  estimate,  coefficient  of  skewness  for 
posterior  distribution  and  Bayes  posterior  risk  is 
presented. 

MATERIALS AND METHODS

The  Posterior  Distribution  of  the  Parameter  using 
Informative Prior (IP):  The distribution of the time-to-
failure  system  usually  follows  the  exponential 
distribution

( )  xf x e λλ −= , 0 ,  0x λ< < ∞ > (1)

It is to be assumed that the prior distribution of  λ  is a 

Gamma distribution with hyperparameters ‘ a ’ and ‘ b ’, 

so the prior distribution of λ  is as under.

( ) ( )
1

a
a bb

p e
a

λλ λ − −=
Γ

, 0 λ< < ∞  ,  , 0a b > . (2)

Hence  the  posterior  distribution  of  λ  

for the given data 

1 2( , , , )nx x x= Kx  is as bellow. (3)

This is the density kernel of the Gamma distribution with 
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posterior  distribution  of  λ  given  data  is 

( ),  Gamma α β .

The  Elicitation  of  Hyperparameters:  The  prior 
predictive distribution (PPD) of a random variable X  is 
defined as under.
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So PPD for an exponential random variable  X takes the 
following form. 
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which  is  ( ),  Eg a b  here  Eg  is  exponential-gamma 

distribution. Using the exponential-gamma distribution as 
a PPD and comparing it with the expert’s assessment of 
this  distribution,  we  choose  those  hyper-parameters 
which make the assessment agree closely with a member 
of the family. The prior predictive probabilities of cycles 
to failure (in ten thousands) over the intervals (0, 3) and 
(3, 6) for a large number of heater switches subject to an 
overload  voltage,  according to  an expert,  say,  are  0.69 
and  0.20  respectively.   A  program  written  in 
Mathematica package for eliciting the hyper-parameters 
of prior density is given in appendix. The elicited values 
of  the  hyper-parameters  a and  b are  8.9936  and 

21.5698  respectively.

The  Posterior  Distribution  using  the  Informative 
Prior:  Having  elicited  the  hyper-parameters,  the  prior 

distribution of  λ  is  ( )8.9936,  21.5698G .  Consider 

the following random sample of cycles to failure (in ten 
thousands) for 20 heater switches subject to an overload 
voltage taken from Kapur and Lamberson (1977): 0.0100, 
0.0340, 0.1940, 0.5670, 0.6010, 0.7120, 1.2910, 1.3670, 
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1.9490, 2.3700, 2.4110, 2.8750, 3.1620, 3.2800, 3.4910, 
3.6860,  3.8540,  4.2110,  4.3970,  6.4730.  Here  20n =  

and  
20

1

46.9350i
i

x
=

=∑ . Hence the posterior distribution 

of parameter  λ  for given data  1 2 20( , , , )x x x= Kx  is 

( )28.9936,  68.5048Gamma .

The Posterior Distribution using the Non-Informative 
Priors  (NIP):  A  non-informative  prior  has  been 
suggested by Jeffreys (1946, 1961), which is frequently 
used  in  situation  where  one  does  not  have  much 
information about the parameters. The Jeffreys prior for 
the parameter λ  is as under.

( ) 1Jp λ λ∝ , 0 λ< < ∞
(6) 

The  posterior  distribution  of  parameter  λ  is 

1

,  
n

i
i

Gamma n x
=

 
  

∑ .  Using the data given in Section 

2.3,  the  posterior  distribution  of  parameter  λ  is 

( )20,  46.9350Gamma .

Posterior  Variance:  Prior  information  is  incorporated 
with the likelihood to find posterior distribution which is 
the basis of Bayesian inference. Posterior variance based 
on IP and NIP are compared to assess relative efficiency 
of the Bayes estimates.

Bayesian  Interval  Estimate:  When  1, , nX XK  are 

independent  and  identically  distributed  exponential 
random variables, Kapur and Lamberson (1977) showed 

that  
1

2
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i
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=
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∑  has a chi-square distribution with 

( )2 a n+  degrees  of  freedom.  By using the  posterior 

distribution,  a  ( )100 1 %C−  highest  density  region 

(HDR) for parameter λ  is as under.
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Coefficient of Skewness: The coefficients of skewness is 

calculated  from  the  posterior  distribution  as  1γ =

2 1 α .

Bayes  Posterior  Risk:  The  expected  value  of  loss 
function for a given decision with respect to the posterior 

distribution is known as posterior risk function and if *d  

is  a  Bayes  estimator  then  * ( )dρ is  known  as  Bayes 

posterior risk and is defined as bellow.

( ) ( )* *,  d E L dλρ λ =  x . (8)

RESULTS AND DISCUSSION

Results  are  presented  in  Tables  1-4.  Hyper-parameters 
assumed are 8.9936  and 21.5698 .

Comparison  of  Priors  with  respect  to  Posterior 
Variance:  The  Posterior  variance  of  parameter  λ  is 
given  in  Table  1  which  reveals  that  informative  prior 
provides more efficient estimates. 

Comparison  of  Priors  based  on  Bayesian  Interval 
Estimate:  The Bayesian  interval  estimate of parameter 
λ  is presented in the following Table 2 which depicts 
that the posterior estimate based on informative prior is 
more efficient. 

Comparison of Priors using Coefficient of Skewness: 
This  section  provides  the  comparison  of  priors  using 

coefficient  of  skewness.  Table  3  shows  that  1 0γ > , 

therefore, the posterior distribution based on informative 
and non-informative priors are slightly positively skewed 
but the skewness is least in case of informative prior.

Table 1: Posterior Variances with IP and NIP

Parameter
Variance using

IP NIP 
λ 0.0062 0.0091

Table 2: Bayesian Interval Estimates

Prior 
Distribution

95%
HDR

99%
HDR

using IP (0.2835, 0.5907) (0.2482, 0.6531)
using NIP (0.2603, 0.6322) (0.2206, 0.7113)

Comparison  of  Priors  using  Bayes  Posterior  Risk: 
Bayes posterior risks using informative prior for different 
loss functions are lesser than their corresponding Bayes 
posterior  risks  using  uninformative  (Jeffreys)  prior  as 
shown in Table 4.

Hence,  once  again,  the  superiority  of  the 
informative prior is established. The comparison of the 
informative  and  non-informative  priors  with  respect  to 
posterior  variance,  the  Bayesian  interval  estimate,  the 
coefficient of skewness of the posterior distribution and 
the Bayes posterior risk shows that the informative prior 
is more advantageous than the uninformative prior. 
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Table  3:  Coefficient  of  Skewness  for  Posterior 
Distribution. 

Prior 
Distribution

Posterior 
Parameters

Coeff of 
Skewness

( ,α β ) 1γ
using IP (28.9936, 68.5048) 0.3714

using NIP (20.0000, 46.9350) 0.4472

Table  4:  Bayes  Posterior  Risks  for  Different  Loss 
Functions

Loss 
Function

Bayes 
Posterior 

Risk

Prior 
Distribution 

using 

Bayes 
Posterior 

Risk

( , )L dλ * ( )dρ * ( )dρ
2

1
d

λ
 −  

1

1α −

IP 0.0357

NIP 0.0526

( ) 2
dλ

λ
− 1

β

IP 0.0146

NIP 0.0213

( ) 2
dλ − 2

α
β

IP 0.0062

NIP 0.0091

APPENDIX 

Programme to Elicit the Hyperparameters of Prior 
Density

Abs[Function[a,a=Function[b,b=(
3

1

1 [ ]

! [ ] [ 1]

a

a x
x

b Gamma a x

x Gamma a b +
=

 +
 + 

∑ -      0.54)+(
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1 [ ]

! [ ] [ 1]

a

a x
x

b Gamma a x

x Gamma a b +
=

 +
 + 

∑ -0.25)]

[Table[{j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j},
{j,55.0079,55.0100,.0001}]]][Range[87.0080,87.0100,
{.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.
0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0
001,.0001,.0001}]]]
Min[Abs[Function[a,a=Function[b,b=(

3

1
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a x
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a x
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b Gamma a x

x Gamma a b +
=

 +
 + 

∑ -0.25)]

[Table[{j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j},
{j,55.0079,55.0100,.0001}]]][Range[87.0080,87.0100,
{.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.

0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0
001,.0001,.0001}]]]]
Position[Abs[Function[a,a=Function[b,b=(
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1
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! [ ] [ 1]
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x Gamma a b +
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b Gamma a x

x Gamma a b +
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 + 

∑ -0.25)]

[Table[{j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j},
{j,55.0079,55.0100,.0001}]]][Range[87.0080,87.0100,
{.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.
0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0
001,.0001,.0001}]]],Min[Abs[Function[a,a=Function[b,

b=(
3

1

1 [ ]

! [ ] [ 1]

a

a x
x

b Gamma a x

x Gamma a b +
=

 +
 + 

∑ -0.54)+(

6

4

1 [ ]

! [ ] [ 1]

a

a x
x

b Gamma a x

x Gamma a b +
=

 +
 + 

∑ -0.25)]

[Table[{j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j},
{j,55.0079,55.0100,.0001}]]][Range[87.0080,87.0100,
{.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.
0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,.0
001,.0001,.0001}]]]]]
Table[{j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j,j},
{j,55.0079,55.0100,.0001}]
%[[17,19]]
Range[87.0080,87.0100,{.0001,.0001,.0001,.0001,.0001,
  .0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001,
  .0001,.0001,.0001,.0001,.0001,.0001,.0001,.0001}]
%[[17,19]]
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