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ABSTRACT: In this paper we combine the boundary value method (for discretizing the temporal 

variable) and finite difference scheme (for discretizing the spatial variables) to numerically solve the 

one dimensional Advection Diffusion Equation. We first employ a fourth order compact scheme to 

discretize the spatial derivatives. Then a linear system of ordinary differential equation is obtained. 

Then we apply a fourth order scheme of boundary value method to approach this system. After this, we 

use the central difference scheme for the temporal variables. Therefore, this scheme can achieve fourth 

order accuracy for both temporal and spatial variables. Numerical applications are performed to check 

the correctness and effectiveness of this compact difference scheme, compared with finite difference 

scheme. 
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INTRODUCTION 

 The compact method is a new finite difference 

approximation. We firstly dicretize the spatial variables 

by a fourth order compact difference scheme. Since the 

boundary conditions are homogeneous, the resulting 

system after discretization for the spatial direction is an 

initial value problem. After this, we use the central 

difference scheme for the temporal variables.  

Compact method: Let us take the one dimensional 

Advection Diffusion Equation as 

 (1) 

with the following initial condition 

  (2) 

and with the homogeneous Dirichlet boundary conditions 

 (3) 

  (4) 

 

where ,  is sufficiently smooth and its 

higher derivatives exist. Where are non negative 

constant.  

Let , be the uniform spatial mesh width. The 

spatial domain  can be subdivided by  

 for  

We also discretize the temporal variable  by , 

, where  is the step size in the temporal 

direction,  is the number of the time steps and the final 

time is . 

We know by the Taylor Series 

 (5) 

 (6) 

Subtracting equation (5) from (6) and dividing by . 

 
Or  

 (7) 

where   

Similarly  

 (8) 

where   

Also we have  

 

 (9) 

where   . 
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Replace   by  in equation (8) and (9). 

  (10) 

 (11) 

By equation (1)  

 

Or  (12) 

But by equation (11)  

 (13) 

Therefore equation (12) becomes 

  

 (14) 

Also by (1) 

 

 (15) 

Using equation (15) in equation (14), we have 

 
(16) 

Substitute equation (16) in equation (9), we have 

 

 (17) 

By equation (1) we have  

 (18) 

But  

  
So equation (18) becomes  

  

 (19) 

Also  

 (20) 

Substituting equations (19) and (20), in eq. (17) we have 

After ignoring the truncation error 

  

 (21)  

Let us take 

 
Therefore equation (21) becomes 

After ignoring the truncation error 

 (22) 

where 

, , 

, 

 , , 

 
Equation (22) can be written in matrix form for 

 . 
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 (23) 

Observing that the implicit scheme is three level in time. 

Since  is given, we need to evaluate  for the next 

time level which can be evaluated as  

 

If we replace , then the above equation gives 

 
Or  

 

 

 
But by equation (1) we have,  

 

 

 

But   , 

 and 

 

 

 

 
So after neglecting the truncation error 

 (24) 

for each  

Finite Difference Scheme: To set up the finite difference 

scheme for eq. (1), select an integer  and the values of  

from   to  then the mesh points  are  

for  

 for  

At any interior mesh points , then the Advection 

Diffusion Equation (1) becomes 

 (25) 

 The method is obtained using the central 

difference approximation for the first and second order 

partial derivatives. 

So that eq. (25) becomes 

 

Where  and  

Neglecting the truncation error leads to the difference 

equation. 

 

 

 

Letting  ,   , 

 

So  

(26) 

This equation holds for each    The 

boundary conditions give 

 (27) 

for each . 

And the initial condition implies that  

 (28) 

for  

Writing in matrix form for   we have 

 

 (29) 

Equations (26) and (27) imply that the  time 

steps requires values from the and  time 

steps. This produces a minor starting problem since 

values of  which is needed, in equation (26) to 

compute   must be obtained from the initial value 

condition.  

 

A better approximation  can be obtained rather 

easily, particularly when the second derivative of  at 
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 can be determined and it is already obtained in 

equation (24). 

Test Problem: Let us consider the Advection Diffusion 

equation as 

 

in the interval . The boundary conditions 

are  

 
and the initial conditions are  

 , . 

The Exact Solution is  

. 

Comparison of the Numerical Results  at  

 

Table 1: Finite Difference Method 

 

ix
 

FDM Exact Error 

0.000000000 0.000000000 0.000000000 0.000000000 

0.100000000 0.303654188 0.304499030 0.000844842 

0.200000000 0.590362070 0.593853831 0.003491761 

0.300000000 0.830537995 0.838061512 0.007523517 

0.400000000 0.997952755 1.010140896 0.012188141 

0.500000000 1.072519616 1.089012742 0.016493126 

0.600000000 1.042588651 1.061931849 0.019343198 

0.700000000 0.906495419 0.926201224 0.019705805 

0.800000000 0.673174928 0.689959764 0.016784836 

0.900000000 0.361737330 0.371915936 0.010178606 

1.000000000 0.000000000 0.000000000 0.000000000 

Table 2: Fourth Order compact Method 

 

ix
 

FOCM Exact Error 

0.000000000 0.000000000 0.000000000 0.000000000 

0.100000000 0.304614116 0.304499030 0.000115086 

0.200000000 0.593954886 0.593853831 0.000101055 

0.300000000 0.838149715 0.838061512 0.000088203 

0.400000000 1.010205466 1.010140896 0.000064570 

0.500000000 1.089046165 1.089012742 0.000033423 

0.600000000 1.061929093 1.061931849 0.000002756 

0.700000000 0.926160487 0.926201224 0.000040767 

0.800000000 0.689884898 0.689959764 0.000074866 

0.900000000 0.371796910 0.371915936 0.000119026 

1.000000000 0.000000000 0.000000000 0.000000000 

For graph see Figure 1 

 
FIGURE 1: Comparison of FDM, FOCM and 

EXACT Solutions 

Conclusion: In this paper, numerical solutions of the 

one-dimensional Advection Diffusion Equation are 

derived using Finite Difference Method (FDM) and ZZ 

Fourth Order Compact Method (FOCM). ZZ Fourth 

Order Compact Method is known to be a powerful device 

for solving functional equations. From the solutions of 

advection diffusion equation, we note that this method, 

gives better results than the usual second order method. 
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