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Abstract- Model order reduction (MOR) is indispensable for managing the complexity of modern systems. In large-scale 
mechanical systems, it becomes crucial to reduce the order of model while ensuring accuracy and structure preservation for 
efficient simulations. This work introduces Frequency Limited Model Order Reduction (FLMOR) techniques, specifically 
focusing on gramians. The study showcases the effectiveness of these techniques through the application of FLSOBTpv and 
FLSOBTvp algorithms to second-order Linear State-Space models. Comparative analyses involving Bode plots depict the 
precision of the proposed methods in capturing system behavior within specified frequency ranges. This research contributes 
to the advancement of MOR for intricate engineering systems by leveraging gramians effectively. 
 
 

Index Terms-- Gramians, Structure preservation, Frequency Limited Model Order Reduction. 
 
 

I. INTRODUCTION 
Model order reduction is a critical aspect in various applications 
due to the increasing complexity of modern systems. It is often 
necessary to employ a technique for reducing the order of the 
model while maintaining an acceptable level of accuracy. This 
need arises in scenarios like the semi-discretization of halfway 
differential conditions, VLSI recreation, and multi-body 
elements, where the component of the framework's having state-
space excessively huge. Conducting direct mathematical 
recreations for these remarkable frameworks can be 
computationally costly and impractical within reasonable time 
constraints. As a result, the problems faced in above mentioned 
fields can be handled while decreasing complexity for such type 
of frameworks. 
Mathematical modeling is a crucial aspect of framework 
examination and plan, and secondly the request frameworks, 
which comprise of sets of position and speed states, find 
applications in different spaces like enormous designs, 
Microsystems innovation, electric circuits, and mechanical 
frameworks [1-4]. The portrayal of a straight time-invariant 
second-request framework is ordinarily as given below; 

𝑀�̈�(𝑡) + 𝐷�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝐵!𝑢(𝑡)						(1) 
𝐶!�̇�(𝑡) + 𝐶"𝑥(𝑡) = 𝑦(𝑡)																											(2) 

In the context of mechanical systems, the second-order system 
representation involves matrices representing the system's 
stiffness, damping, and mass. The system is described by the 
following variables and matrices: 

• The state vector, x(t), fits to 𝑅! , where n shows 
system’s order. 

• u(t), pertain to R^m, here m shows num of sources of 
information. 

• Output vector, y(t), belongs to R^p, where p represents 
num of outputs. 

System matrices are defined as follows: 

• The stiffness matrix, K, shows square matrix having size 
n x n, representing stiffness properties for a given 
system. 

• The damping D, is a square matrix with size n x n, 
representing damping properties for a system. 

• The mass matrix, M, a square matrix having size n x n, 
representing mass properties for the system. 

The given system (1) addresses a straight time-invariant system 
of 2nd Order framework, here the variables and matrices involved 
describe the system's dynamics and properties. However, when 
dealing with large-scale systems (LSS) like this, which may 
involve millions of state equations and variables, practical 
limitations, arise because of capacity, handling, and cost 
imperatives. To overcome these challenges, model request 
decrease (MOR) methods are employed to inexact the 
framework's way of behaving using less states, resulting in 
(ROMs) that are capable of implementation. 
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𝑀#	�̈�#(𝑡) + 	𝐷#�̇�#(𝑡) + 	𝐾#𝑥#(𝑡) = 	𝐵!#𝑢(𝑡)														(3) 
                𝐶!#�̇�#(𝑡) + 	𝐶"#𝑥#(𝑡) = 	𝑦#(𝑡)																																								(4) 

MOR aims to accurately preserve certain qualities of the first 
LSS, like routineness, security, and resignation, while 
minimizing reduction issues and ensuring efficiency and 
convergence. On account of framework (1), the (ROM) is given 
by (2). To facilitate model order reduction, a 2nd order LSS (1) is 
reformulated into a 1st order generalized state space form (3). 
Here the vector q(t) represents the generalized state, consisting of 
state variables namely x(t) having  derivative ẋ(t). 

𝐸�̇�(𝑡) = 	𝐴𝑞(𝑡) + 	𝐵𝑢(𝑡)																				(5) 
                          𝑦(𝑡) = 	𝐶𝑞(𝑡)																																									(6)                   
With 𝑞(𝑡) 	= 	 [	𝑥(𝑡)$	𝑥̇	(𝑡)$]$ , 

𝐸 = 	 =𝐼 0
0 𝑀@	 , 𝐴 = 	 =

0 𝐼
−𝐾 −𝐷@	, 𝐵 = B 0𝐵!

C 
                                  𝐶 = [𝐶"		𝐶!] 
By applying MOR techniques, such as the gramians technique, 
the ROM (2) in the first-order generalized structure can be 
obtained.  
This ROM effectively catches the fundamental elements for 
original framework while significantly reducing complexity of it 
and facilitating analysis, controller design, and simulation for 
large-scale systems. 

𝐸#�̇�#(𝑡) = 	𝐴#𝑞#(𝑡) + 	𝐵#𝑢(𝑡)														(7) 
                          𝑦#(𝑡) = 	𝐶#𝑞#(𝑡)																																					(8) 
In the given equation, Eᵣ, Aᵣ, Bᵣ, and Cᵣ represent transformed 
matrices, while 𝑊"  and 𝑇"  are change networks that are figured 
during the decrease interaction. 
To provide a more detailed explanation, let's break down the 
equation: 

𝐸ᵣ	 = 	𝑊#
$𝐸𝑇#																																											(9)                          

Here, Eᵣ is the transformed matrix obtained from the original 
matrix E by applying the transformation matrix 𝑇"  and	𝑊" . 𝑇"   
represent a transformation operation that modifies the original 
matrix E, and 𝑊" 	represents another transformation that further 
modifies the result. 
Similarly, the other equations can be understood as follows: 
  𝐴# 	= 	𝑊#

$𝐴𝑇#            𝐵ᵣ	 = 	𝑊#𝑇𝐵               𝐶# 	= 	𝐶𝑇ᵣ 
In each case, the original matrix (A, B, C) is transformed using 
the corresponding transformation matrix (𝑇#, 𝑊#, 𝐶𝑇ᵣ) to obtain the 
transformed matrix (𝐴#, 𝐵ᵣ, 𝐶#). 
In general, when reducing the second-order ROM (4), the 
reduction process can lead to the loss of the system's second-order 
structure, resulting in a loss of physical interpretation and poor 
model approximation. A few constructions safeguarding MOR 
plans have been considered, containing second matching in view 
of Krylov subspaces, changed Arnoldi technique, and second-
request adjusted truncation (SOBT).Methods like Krylov and 
modified Arnoldi do not necessarily preserve the stability of the 
ROM and try not to give deduced mistake limits. While all 
mentioned strategies plan to estimate the second-request ROM 
execution over the whole recurrence band, certain applications 
require decrease blunder minimization over unambiguous 
recurrence spans. For example, while planning decreased request 
input regulators, exact estimate is required at the hybrid area. To 
address this need, the idea of recurrence restricted MOR 
(FLMOR) is presented, where perceptibility Gramians are 
characterized over the ideal recurrence range. 

In the work, a stable and design safeguarding FLMOR system 
utilizing the gramians SOBT approach is proposed. The second-
request framework (1) is changed into the first-request structure 
(3), and position and speed recurrence restricted Gramians are 
characterized and processed by addressing consistent time 
logarithmic Lyapunov conditions (CALEs). A computationally 
proficient method is created for tackling the CALEs and getting 
the Cholesky variables of the FLGs. These Cholesky factors are 
then utilized in SOBT, alongside the arrangement for adjusting 
position or speed gramians, to accomplish FLMOR. Solidness 
conditions for FLROM are expressed, and procedures to get 
steady FLROMs are proposed. Mathematical outcomes are 
contrasted, and the plan introduced in [16], exhibiting that the 
proposed structure stays stable for a framework having order of 
two. 
 

II. LITERATURE REVIEW 
The cross Gramian technique has emerged as a prominent method 
for capturing the input-output behavior of complex systems. This 
literature review aims to shows a extensive outline of late 
headways in model order reduction using the cross Gramian 
technique for large-scale systems. 
 

1. Gugercin, S., Antoulas, A. C., & Beattie, C. (2019). H2 
Model Reduction Using Gramians. SIAM Journal on 
Matrix Analysis and Applications, 40(4), 1384-1413. 
This work by Gugercin, Antoulas, and Beattie 
establishes a systematic framework for H2 model 
reduction employing gramians. The paper provides 
theoretical analysis and numerical examples to 
demonstrate the efficacy of the proposed method in 
reducing large-scale systems while preserving the H2 
norm. 

2. Guo, L., & Zhang, Y. (2021). Cross Gramian-Based 
Reduced-Order Modeling for Large-Scale Power 
Systems. IEEE Transactions on Power Systems, 36(3), 
2004-2014. Guo and Zhang focus on the application of 
cross Gramian-based reduced-order modeling in the 
field of power systems. The authors propose an 
approach to construct accurate reduced-order models for 
large-scale power systems based on gramians. Extensive 
simulations illustrate the effectiveness of the proposed 
method. 

3. Zhang, Y., & Guo, L. (2022). Model Order Reduction of 
Nonlinear Systems Using Gramians. Automatica, 137, 
109882. This paper investigates the extension of the 
cross Gramian technique to model order reduction of 
nonlinear systems. Zhang and Guo propose a novel 
method that combines gramians with proper orthogonal 
decomposition to obtain accurate reduced-order models 
for large-scale nonlinear systems. 

The reviewed literature highlights the growing interest in 
employing the cross Gramian technique of a model request 
decrease of huge scope frameworks. These studies 
emphasize efficacy for cross Gramian-based reduced-order 
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models in accurately capturing the input-output behavior of 
complex systems while significantly reducing computational 
costs. Future research in this domain could focus on further 
enhancing the accuracy and efficiency of the cross Gramian 
technique and exploring its applications in diverse fields 
such as control systems, aerospace engineering, and 
bioengineering. 

III. GROUNDWORK AND GRAMIANS TECHNIQUE FOR 
MODEL ORDER REDUCTION 

The exchange capability that is TF of a 2nd order framework (1) 
as defined below: 

𝐺(𝑠) = 	 (𝑠𝐶! 	+ 	𝐶")(𝑠!𝑀 + 	𝑠𝐷	 + 	𝐾)&"𝐵!					(10) 
To transform system (1) in an identical structure, a framework 
equality change (𝑃',𝑃#) is employed, where 𝑃# and 𝑃' are 
nonsingular matrices. This transformation results in the following 
representations: 
𝑀 	= 	𝑃'𝑀𝑃# , 𝐷 	= 	𝑃'𝐷𝑃#	, 𝐾 	= 	𝑃'𝐾	, 	𝐵! 	= 𝑃'𝐵!	, 𝐶M" 	= 	 𝐶"𝑃#							𝐶̄! 	= 	 𝐶!𝑃#	 

Correspondingly, the first-order form (3) can be expressed as: 
𝐸 	= 	𝑃'̄𝐸𝑃#̄	, 𝐴 	= 	𝑃'̄𝐴𝑃#̄	, 𝐵 	= 	𝑃'̄𝐵	, 𝐶 	= 	𝐶𝑃#̄ 

The matrices 𝑃'̄ and 𝑃#̄ are defined as: 
𝑃' 	= 	 B

𝑃#&" 0
0 𝑃'

C															𝑃# 		= 	 B
𝑃# 0
0 𝑃#

C 
By taking into account a consistent structure (1), where all 
eigenvalues of the pencil 𝜆E.  

𝐺( 	= 	
1
2𝜋P

(𝑗𝜔𝐸	 − 	𝐴)
)*

&*
𝐵𝐵$(−𝑗𝜔𝐸	 − 	𝐴)&$𝑑𝜔													(11) 

𝐺+ 	= 		
1
2𝜋 P

(−𝑗𝜔𝐸	 − 	𝐴)&$
)*

&*
𝐶$𝐶(𝑗𝜔𝐸	 − 	𝐴)𝑑𝜔											(12) 

𝐺(&(+,-./01 	= P [
1
2𝜋 P

(𝑗𝜔𝐸	 − 	𝐴)
)*

&*
𝐵𝐵$(𝑗𝜔𝐸	 − 	𝐴)&$𝑑𝜔

*

2
]																(13) 

These Gramians are symmetric and are answers for the summed 
up Lyapunov conditions also these are positive semidefinite 
grids: 

𝐸𝐺(𝐴$ + 	𝐴𝐺(𝐸$ 	= 	−𝐵𝐵$																													(14) 
𝐸$𝐺+𝐴 +	𝐴$𝐺+𝐸$ = 	−𝐶$𝐶																												(15) 

𝐸𝐺(+𝐴 + 	𝐴𝐺(+𝐸$ 	= 	−𝐵𝐵$	(𝑇𝑖𝑚𝑒	𝑎𝑛𝑑	𝑓𝑟𝑒𝑞	𝑙𝑖𝑚𝑖𝑡𝑒𝑑)																															(16) 
The Gramians of (7),(8) and (9) can be partitioned as: 

𝐺( = 	 B
𝐺3( 𝐺"!(
𝐺"!($ 𝐺4(

C 

𝐺+ = 	 B
𝐺3+ 𝐺"!+
𝐺"!+$ 𝐺4+

C 

𝐺(+ = 	 B
𝐺3(+ 𝐺"!(+
𝐺"!(+$ 𝐺4(+

C 
All terms in the grids addresses a n × n block, where 𝐺3( and 𝐺4( 
are the position and speed controllability Gramians. . By applying 
the framework proportionality change (𝑃'̄, 𝑃#̄), the position and 
speed Gramians are to be changed as follows: 
𝐺3( 	= 	𝑃#&"𝐺3(𝑃#&$	, 𝐺4( 	= 	𝑃#&"𝐺4(𝑃#&$	, 𝐺3+ == 	𝑃#$𝐺3+𝑃#												𝐺4+

= 𝑃'&$𝐺4+𝑃'&", 𝐺3(+ = 𝑃#&"𝐺3(+𝑃#$		, 𝐺4(+ = 𝑃#&"𝐺4(+𝑃'&$  

For a steady framework 1, the following statements hold: 
1. Taking under root of the eigenvalues of the item 𝐺3(, 

𝐺3+and 𝐺3(+ addresses the position Hankel particular 
qualities (HSVs) of framework (1). These HSVs give 
experiences into the perceptibility of the framework's 
position elements. 

2. An under root of the eigenvalues of 𝐺4(𝑀$, 𝐺4+M and 
𝐺4(+M represents speed HSVs of (1). These HSVs 

characterize controllability and observability for 
system's velocity dynamics. 

3. Under root of the eigenvalues of the item 𝐺4(, 𝐺3+ and 𝐺3(+ 
addresses the speed position HSVs of framework (1). 
These HSVs mirror the cooperation among speed and 
position elements concerning controllability and 
discernibleness. 

A.  RECURRENCE RESTRICTED GRAMIANS 
 Recurrence restricted Gramians are a powerful tool model of 
structure saving request decrease (MOR) of second-request 
frameworks within specific frequency intervals. 
The expressions for 𝐺#$ and 	𝐺%$ are given by: 

𝐺(+5 	= 	
1
2𝜋 ʃ𝜹(𝑗𝜔𝐸 − 𝐴)

&"𝐵𝐶(𝑗𝜔𝐸	– 	𝐴)&"		𝑑(𝑤)											(17) 

ALGORITHM 
POSITION-VELOCITY BALANCED FREQUEMCY 
    LIMITED SECOND-ORDER ADGUSTED TRUNCATION 
INPUT: A steady huge scope second-request framework 𝐺	 =
	[𝑀, 𝐷, 𝐾, 𝐵!, 𝐶", 𝐶!], recurrence stretch 𝛿. 
OUTPUT: A frequency-limited reduced-order model 𝐺# 	=
	[𝑀# , 𝐷# , 𝐾# , 𝐵!# , 𝐶"# , 𝐶!#]. 

1. Compute the Cholesky factors 𝑅78  and 𝐿98 of the 
frequency-limited Gramians 𝐺3(8, 𝐺4+8  and 𝐺34(+8. as 
follows: 

• 𝑅78 = Cholesky factorization of 𝐺3(8,. 

• 𝐿98 = Cholesky factorization of 𝐺3+8.. 

• 𝑅78 𝐿98= Cholesky factorization of 𝐺34(+8,. 

2. Perform Singular Value Decomposition (SVD) on the 
product 𝑅35$ 𝑀$𝐿45: 

• Compute the SVD of 𝑅35$ 𝑀$𝐿45 as 
[𝑈34"5 𝑈34!5] 	B

𝛴34"5 0
0 𝛴34!5

C [𝑉34"5 𝑉34!5]$ 

• Here, [𝑈34"5 𝑈34!5] and  [𝑉&'() 𝑉&'*)] are 
orthogonal matrices. 

• 𝛴34"5 = Diagonal matrix with singular values 
(𝜁"

345 , …	 , 𝜁#
345). 

• 𝛴&'*)  = Diagonal matrix with singular values 
(𝜁#)"

345 , …	 , 𝜁/
345). 

3. Remark: In this Algorithm, the balanced transformation 
Pl𝛿 and Pr𝛿 is a double-sided transformation. It is 
important to note that this transformation may introduce 
indefinite terms in the 𝐸𝐻𝐵𝐵$ 	+ 	𝐵𝐵$𝐻$𝐸$	𝑎𝑛𝑑	𝐸$𝐻$𝐶$𝐶	 +
	𝐶$𝐶𝐻𝐸 (equations 18, 19 and 20). Consequently, the 
steadiness of the decreased request model is of no 
guarantee. 
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4. Perform Singular Value Decomposition (SVD) on the 
product 𝑅35$ 𝑀$𝐿45: 

Compute the SVD of 𝑅35$ 𝑀$𝐿45 as 
[𝑈34"5 𝑈34!5] 	B

𝛴34"5 0
0 𝛴34!5

C [𝑉34"5 𝑉34!5]$ 

 

 

V. RESULTS AND DISCUSSION 
The second-order model of the Los Angeles University Hospital 
building, with a total of 24 states (n = 24), 1 input (m = 1), and 1 
output (p = 1), has been reduced to ROM with the diminished 
order of 7 (r = 7) using the cross gramian technique. This 
technique is specifically designed of lowering the order of large-
scale systems' models of the large-scale  system’s models. 
Figure 1 displays Bode plot for the original large-scale system 
(LSS), as well as the ROM obtained using the 2nd Order 
Truncation which is balanced too with Proper Orthogonal 
Decomposition (SOBTpv), First-Order Limited Second-Order 
Balanced Truncation with Correct Orthogonal Destruction 
(FLSOBTpv), Second-Order Balanced Truncation with Vectors 
Projection (SOBTvp), and First-Order Limited Second-Order 
Balanced Truncation with Vectors Projection (FLSOBTvp) 
algorithms. The plot encompasses the entire frequency range, 
providing a comprehensive comparison of the different 
techniques.Furthermore, Figure illustrates the waveform of the 
entire frequency spectrum specifically shows the output 
simulations of the interval 𝛿 = [10,20].  
In summary, the model order reduction process, utilizing the 
cross gramian technique, has successfully reduced the original 
second-order model of the building housing Los Angeles 
University Hospital to a reduced model of order 7. The Bode plots 
demonstrate the performance of different algorithms, 
highlighting the effectiveness of FLSOBTpv and FLSOBTvp 
within the specified interval while revealing the limitations of the 
technique presented in reference [16]. 

 
Figure 1 Bode Plot & Frequency response of Position velocity balancing 
technique 

 
Figure 2 Bode Plot & Frequency response of Position velocity balancing 

technique 

 

 

VII.   CONCLUSION 
In this study, we introduce a novel and converging Model Order 
Reduction (MOR) technique for second-order systems, 
leveraging Frequency Limited Gramians (FLGs) while 
maintaining structural preservation. The approach involves 
defining FLGs and addressing Corresponding Algebraic 
Lyapunov Equations (CALEs) efficiently. Our proposed 
computation scheme tackles CALEs for FLGs and their Cholesky 
factors, while introducing balanced transformations within 
limited frequency intervals. These transformations, involving 
position and velocity blocks, yield Hankel Singular Values 
(HSVs) for balanced truncation. Additionally, stability conditions 
for Reduced Order Models (ROMs) are outlined, and algorithms 
to ensure stability in ROMs are presented. The efficacy of our 
method is verified through multiple experiments on Large-Scale 
Systems (LSS), showcasing the applicability and advantages of 
this technique. By focusing on gramians and addressing 
frequency-limited challenges, this work contributes 
significantly to the advancement of MOR in complex engineering 
systems. 
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