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ABSTRACT:In the ever-expanding realm of live video streaming applications, the demand for real-time content delivery has 
reached unprecedented heights. Yet, challenges persist, tethered to the uncertainties of internet availability and the constraints 
of server-based resource optimization. As the appetite for efficient and scalable live video streaming continues to surge, the call 
for inventive solutions that break free from conventional server-centric systems grows stronger. Enter the realm of serverless 
streaming—a groundbreaking opportunity to surmount these challenges. At the core of this research lies a mission to confront 
the shackles imposed by internet dependency and the limitations of server-based frameworks in the context of live video 
streaming. Our primary aim is to usher in a new era of content sharing in a serverless environment, unlocking the potential to 
extend mobile device connectivity and transcend bandwidth constraints. The proposed solution introduces an ingenious protocol 
spanning from the Data Link Layer (DLL) to the Application Layer (AL). Through the establishment of two virtual networks 
and the application of the Bridge Protocol (BP), a bridge emerges, seamlessly connecting them. This framework empowers the 
sharing of a mobile device's display to other devices via a hotspot, liberating the process from the confines of an internet 
connection. Preliminary results affirm the efficiency of our framework in transferring the Application Layer (AL) display from 
one mobile device to others. This achievement is made possible by binding two virtual networks to the same NIC using our 
bridge protocol. The spotlight is on screen sharing through image streaming between devices, all achieved independent of an 
internet connection. This research represents a pioneering approach to mobile streaming, placing a distinct focus on peer-to-
peer (P2P) technology. It proposes an unprecedented fusion of live video streaming dynamics with the principles of P2P video 
streaming, culminating in a method that optimizes device interconnection, unshackled from the constraints of traditional 
internet-based systems. 
Keywords: Bridge Protocol, Distributed Mobile Streaming, Serverless Environment. 

 

INTRODUCTION: 
In the age of digitization, our lives are seamlessly interwoven 
with the presence of mobile devices, shaping the very fabric of 
our daily existence. These devices, in their swift evolution, 
have not only revolutionized communication but have also 
redefined the way we engage with content. Among the myriad 
functionalities that have captured our collective fascination, 
live streaming stands out as a meteoric phenomenon, 
solidifying its status as a highly sought-after feature on mobile 
platforms. As technology propels forward, we find ourselves at 
a crossroads, witnessing a gradual departure from traditional 
systems, particularly those rooted in server-driven 
architectures. This shift is propelled by an unceasing demand 
for decentralization, the quest for reduced latency, and the 
pursuit of more efficient resource utilization. 

The global digital communication landscape is undergoing a 
profound transformation[1]. What was once considered a 
luxury, video streaming has now become an integral part of our  

 

digital experience. Countless applications facilitate real-time 
video broadcasts to millions worldwide. Yet, like any 
technology in its zenith, live streaming encounters its unique 
set of challenges[2]. 

At the core of our digitally connected society lies the essential 
thread of internet connectivity. But what happens when this 
thread is disrupted or unavailable? Can live video streaming 
still be a viable possibility? More crucially, can it maintain 
efficiency and robustness in the face of such challenges? Our 
research embarks on a journey into this niche yet vital realm. 
The pressing issues of internet availability constraints and 
server optimization demand urgent solutions. In a world 
dominated by mobile devices, the vision of a server-less 
environment for live video sharing presents an alluring and 
tantalizing alternative[3]. 
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Study aim: 
At the heart of our research lies a visionary mission: to forge a 
cutting-edge framework or protocol that liberates users from 
the shackles of internet dependence. Our aim is to empower 
individuals to seamlessly share and distribute content in a realm 
where connectivity barriers dissolve, harnessing the power of a 
server-less environment facilitated by mobile hotspots. In this 
transformative landscape, our goal extends beyond mere 
distribution; we envision a paradigm shift in content 
dissemination through the art of multicasting, where each node 
becomes a vibrant source of shared experiences and 
information. This research endeavors to pioneer a future where 
connectivity is not a limitation but a gateway to a boundless 
exchange of knowledge and experiences. 

Problem Statement: 
At the crux of our present research lies a formidable challenge: 
the absence of a viable solution for real-time video sharing 
within a server-less environment, utilizing the dynamic 
capabilities of mobile hotspots and implementing multicasting 
of identical content from every node. While existing solutions 
diligently tackle the optimization of network and server 
resources, they fall short in addressing the critical challenges 
posed by sharing content in the absence of an internet 
connection, as well as the untapped potential for multicasting 
within these unique environments. Our research boldly 
ventures into uncharted territory, aiming not only to bridge this 
gap but to redefine the landscape of live video sharing in server-
less ecosystems. 

Research Objectives: 
At the core of our research endeavors is a visionary goal: to 
craft a pioneering framework enabling mobile screen sharing 
without the constraints of internet connectivity within a server-
less environment. This ambitious objective unfolds through a 
meticulously designed approach, where innovation converges 
with practicality. Our strategy encompasses the following key 
elements: 

1. Creation of a Virtual Network: We embark on the journey by 
establishing a virtual network for mobile devices, ingeniously 
leveraging the power of hotspots. This foundational step lays 
the groundwork for connectivity that transcends traditional 
boundaries. 

2. Bridge Protocol (BP) Implementation: To orchestrate seamless 
communication within these virtual networks on a single 
Network Interface Card (NIC), we introduce the Bridge 
Protocol (BP). This intelligent protocol becomes the linchpin, 
fostering efficient and effective data exchange. 

3.Utilization of TCP and UDP: In the intricate dance of data 
packet transmission between connected devices, we employ the 
robust Transmission Control Protocol (TCP) and the nimble 
User Datagram Protocol (UDP). This dynamic duo ensures a 

reliable and swift exchange of information, adapting to the 
unique needs of our server-less environment. 

4.Expanding Device Limits and Bandwidth: We push the 
boundaries of connected devices and bandwidth by ingeniously 
recreating virtual networks on each mobile device. This 
ingenious approach aims to enhance the scalability and 
resilience of our mobile screen sharing ecosystem. 

5.Shift towards Broadcasting: Finally, we revolutionize the 
sharing mechanism itself by embracing broadcasting. This 
strategic shift ensures seamless content distribution among 
connected devices, fostering a harmonious and efficient sharing 
experience. 

In essence, our research aspires not only to break the barriers of 
conventional mobile screen sharing but to redefine the very 
landscape of how we envision and implement connectivity in a 
server-less world. Through these innovative strategies, we chart 
a course toward a future where mobile screen sharing becomes 
an effortlessly accessible and ubiquitous experience. 

Proposed Methodology: 
This research venture is centered around the conception and 
implementation of an innovative protocol, poised for 
experimentation on Android mobile devices to revolutionize 
communication. Illustrated in Figure 1.1 is the intricate 
functionality of the envisioned Bridge Protocol, illustrating the 
creation of two distinct virtual networks on a single Network 
Interface Card (NIC) within a mobile device. Each of these 
networks boasts its own identical configurations, yet direct 
communication between them remains elusive. The crux of this 
challenge is the impetus behind the creation of the Bridge 
Protocol (BP), serving as the linchpin for inter-network 
communication and facilitating the seamless transfer of video 
frames from one network's Application Layer (AL) to another. 

The experimental phase unfolds on the Android platform, 
where an ad hoc network is forged using the mobile hotspot. 
All recipient mobile devices converge within this network, with 
each recipient joining two virtual networks. One network links 
to the sender node, while the other is autonomously created 
within the recipient device. The Bridge Protocol commences its 
work, bridging these networks within the device and fostering 
communication between them. All usable ports of one network 
ingeniously bridge to the other, ensuring a cohesive network 
architecture. 

The Bridge Protocol is meticulously crafted using both TCP 
and UDP, with TCP facilitating the scanning of the receiving 
mobile device's network. Acknowledgment is dispatched upon 
packet reception, prompting a search via ping on each IP port 
to identify live IPs within range. The live IP, indicative of the 
sender mobile device, awaits connections on an open port, and 
Figure 1 exemplifies the seamless bridging of each mobile 
network to its successive device while concurrently searching 
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its connected network for live IPs. Upon acknowledgment, the 
identified IP is cataloged in the client-side list. Subsequently, a 
handshake request is initiated, and if accepted by the sender, 
the device becomes an integral part of that network, initiating 
seamless communication. In the receiving node, dual networks 
exist—one in which it is connected and the other autonomously 
created. The Bridge Protocol adeptly unites these networks, 
fostering a cohesive and integrated communication 
environment. Moreover, experimental results manifest through 
an exploration of video stream quality, contingent upon the 
number of connected mobile devices. Initial experiments 
involve three mobile devices sharing a single network for 
communication, with subsequent extensions to record video 
quality, delay time, and mobile performance as the number of 
connected devices proliferates. This comprehensive approach 
ensures a thorough understanding of the protocol's impact on 
the robustness and quality of mobile communication. 

LITERATURE REVIEW: 
Serverless edge computing represents an evolving paradigm 
that extends the advantages of serverless computing to the 
dynamic edge-cloud continuum. This paper introduces faas-
sim, an innovative simulation framework tailored to address the 
unique challenges of serverless edge computing platforms. In 
serverless computing, the abstraction of infrastructure from 
application developers places the responsibility of efficient 
management on platform operators. However, the transition to 
edge computing amplifies this challenge due to the absence of 
reference architectures, design tools, and standardized 
benchmarks[4]. 

Faas-sim bridges this gap by offering a threefold solution: (a) a 
generalized model of serverless systems built on the function-
as-a-service abstraction, (b) a trace-driven stochastic discrete-
event simulation engine using real-world edge computing 
testbed data, and (c) a network topology generator to simulate 
distributed and heterogeneous edge-cloud systems. The 
contributions of faas-sim extend beyond simulation, 
encompassing a performance and resource modeling approach 
based on real profiling experiments. The framework includes a 
flexible codebase in Python, integrating seamlessly with data 
science tools and forming a key component of the broader 
Edgerun project—an ecosystem supporting researchers and 
practitioners in edge-cloud experiments. 

Faas-sim's impact is multifaceted, providing a robust 
foundation for researchers and platform designers to develop, 
implement, and evaluate novel serverless edge platforms. The 
framework allows for the exploration of function adaptations, 
scheduling algorithms, and load-balancing strategies. Notably, 
faas-sim has been employed successfully in diverse scenarios, 
from scheduling performance comparisons to large-scale 
distributed edge computing simulations. As part of ongoing 
work, the integration of faas-sim into the control loop of 
operating serverless systems is explored, offering the potential 

for real-time refinement of simulation models based on trace 
data from actual workload executions[5]. 

faas-sim emerges as a pivotal tool in the realm of serverless 
edge computing, offering a versatile simulation environment 
backed by real-world data. Its utility extends to both practical 
experimentation and theoretical exploration, contributing 
significantly to the advancement of this emerging and dynamic 
field[6]. 

In the swiftly evolving landscape of Information and 
Communication Technologies (ICT), the integration of modern 
technologies is reshaping industries, fostering dynamic value 
chains, and facilitating collaboration among various 
stakeholders. A compelling example is the emergence of Smart 
Tourism, where ICT is leveraged to craft immersive and 
sustainable tourism experiences. However, the decentralized 
nature of these environments presents a persistent challenge—
harmonizing diverse services and data across disparate 
administrative domains. In response, we introduce APERTO, a 
decentralized and distributed architecture underpinned by 
APERTO FaaS, a Serverless platform. This platform 
streamlines business logic prototyping, reduces entry barriers, 
and minimizes development costs. APERTO addresses the 
intricacies of distributed and heterogeneous environments by 
employing asynchronous and transparent communications 
between components, thus optimizing solutions for seamless 
data and service integration. 

At its core, APERTO tackles critical issues, providing scalable 
mechanisms for function composition, end-to-end Quality of 
Service (QoS) slices, uniform access to diverse data sources, 
and a decentralized approach for resource access verification. 
APERTO FaaS, with its innovative features like (zero) fine-
grained scaling and reduced management overhead, signifies a 
significant advancement in creating accessible and cost-
efficient solutions in the realm of ICT-driven collaboration and 
integration. This architecture stands as a transformative step 
toward a more integrated and streamlined future for industries 
embracing the potential of Information and Communication 
Technologies[7]. 

Introduces Portals, a novel serverless, distributed programming 
model that seamlessly integrates the exact-once processing 
guarantees of stateful dataflow streaming frameworks with the 
compositional, message-driven nature of actor frameworks. 
The core elements of computation in Portals, termed atomic 
streams, enable the construction of decentralized applications 
dynamically, ensuring scalability on demand while adhering to 
strict atomic processing guarantees. The model is versatile, 
supporting various distributed programming paradigms and use 
cases. The paper outlines Portals' capabilities, presenting 
programming model invariants and the associated system 
methods that uphold them[8]. Key contributions include 
transactional processing guarantees, intuitive data-parallel 
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service composition, and use cases ranging from Sagas to 
GDPR-support, showcasing the model's generality and 
effectiveness. A prototype implementation is discussed, 
providing insights into the design and performance evaluation. 

The architecture of Portals comprises the portals programming 
platform and the portals runtime, featuring components such as 
the scheduler, registry, atomic streams, workflows, and portals. 
The implementation leverages distributed transactional logs 
like Apache Kafka and Pravega. The model is presented as a 
high-level physical plan, demonstrating its end-to-end 
processing guarantees and scalable data-parallel execution. 
Portals represents a significant advancement, combining 
diverse features into a unified programming model, making it a 
promising alternative for developing scalable stateful serverless 
applications with guaranteed atomic processing. Future work 
includes completing the distributed implementation, refining 
operational semantics, providing a sound type system, and 
exploring extensions such as dynamic atom splitting and 
fusing, along with actor-like references[9]. 

This work introduces Crucial, a system designed to address the 
challenges of building highly-parallel stateful serverless 
applications, particularly those requiring fine-grained support 
for mutable state and synchronization, such as machine 
learning (ML) and scientific computing. Crucial seamlessly 
integrates the simplicity of serverless computing with the 
scalability of Function-as-a-Service (FaaS) platforms. 
Leveraging a distributed shared memory layer, Crucial enables 
the effortless porting of multi-threaded code bases to serverless 
environments, unlocking the scalability and cost-effectiveness 
of FaaS platforms[10]. The system is validated through micro-
benchmarks and the implementation of various stateful 
applications, including ML algorithms like k-means and 
logistic regression. Evaluation results show Crucial 
outperforming or performing comparably to Apache Spark at a 
similar cost, with applications achieving up to 30% higher 
speed than dedicated high-end servers. Crucial's open-source 
implementation, consisting of around 10K SLOC, is available 
online, showcasing its versatility and practicality in serverless 
programming[11]. 

The architecture of Crucial, discussed in detail, incorporates a 
dynamic shared object (DSO) layer, written a top the Infinispan 
in-memory data grid. A Crucial application, written in Java, 
utilizes Apache Maven for compilation and dependency 
management. The system employs abstractions for distributed 
parallelism, including an innovative Serverless Executor 
Service and Iterative Task[12]. AWS Lambda functions 
facilitate the execution of cloud threads. The system 
demonstrates efficient handling of distributed references, 
synchronization objects, and dynamic parallelism. The 
evaluation further explores the runtime of Crucial through 
micro-benchmarks, fine-grained updates to mutable data, and 
porting of state-of-the-art ML libraries to serverless. The study 

aims to assess Crucial's ease of programming, benefits in terms 
of serverless capabilities, efficiency, and cost-effectiveness for 
both serverless-native and ported applications[13]. 

Explores the cost implications of choosing between distributed 
stream processing (DSP) and Function-as-a-Service (FaaS) for 
cloud event processing applications. Despite architectural 
differences, both DSP and FaaS can model loosely-coupled job 
graphs, making them applicable for real-time event processing. 
The study implements stateless and stateful workflows using 
the Theodolite benchmarking suite on cloud FaaS and DSP 
platforms, considering factors such as application type, cloud 
service provider, and runtime environment[14]. The evaluation 
provides decision guidelines for cloud engineers based on a 
comprehensive analysis of the cost-effectiveness of different 
deployment scenarios. 

The benchmarking suite involves the implementation of use 
cases for DSP and FaaS, emphasizing adherence to best 
practices and allowing for broader evaluations beyond DSP vs. 
FaaS. Load generation is achieved through a dedicated load 
generator within the same cloud datacenter, emulating sensors 
with varying loads. The benchmark aims to understand the cost 
implications of operating applications under different data rates 
rather than focusing on scalability or elasticity[15]. 

The extensive evaluation section presents a baseline 
comparison between Google Cloud Functions and Apache 
Flink, detailing implementations for stateless and stateful use 
cases. The results demonstrate that FaaS is economically 
advantageous for stateless applications with low to medium 
event arrival rates, while the cost of database access in FaaS 
becomes a limiting factor for stateful applications with higher 
event processing rates. The study provides insights into the cost 
breakdown, showcasing the interplay between fixed costs, 
variable costs per request, and batched variable costs in DSP 
and FaaS deployments[16]. 

 
Figure 1.0 Contextual Diagram. 

This research uses a framework and UDP socket-based protocol 
to transfer screen capture from one phone to another. An 
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Android app with sender and receiver modes is used for this 
experiment. BP is a framework that uses existing mobile 
technology as a base layer to communicate and broadcast data 
from sender to receiver. It also bridges two independent 
networks on the same NIC for further distribution, as shown in 
figure 3.0. 

Figure 2.0 depicts a server-less, internet-free working 
paradigm. As shown in figure 2.0, one sender opens its hotspot 
on which other devices connect to WIFI and open their own 
hotspots with different networks. Bridging combines two data 
link layer networks by sending requests to the destination 
address and responding to data based on MAC addresses as 
shown in figure 4.0. As shown in figure 3.1, suggested BP acts 
as middleware, broadcasting data unidirectionally via a client 
socket. This is extended to the nth node; however, the number 
of devices increases the delay. 

 
Figure 2.0 Bridge-Network. 

The complete framework also includes android-specific 
communication norms and restrictions. Frameworks capture 
frames based on screen resolution in the application layer and 
compress them using bitmap compression on the presentation 
layer. The session layer handles the user connection as a socket 
connection and manages a user list. Data is then sent to the 
client using FIFO. The network layer controls connected device 
data flow and failover connection management, whereas the 
data link layer handles bridging network and data forwarding 
regulations. Since we don't have bandwidth congestion, the data 
link layer buffer isn't used to deliver pure real-time streaming. 
All additional default network rules and approaches.  

Figure 2.0 illustrates BP's whole operation. Sender phone 
initiates hotspot on dynamic network where all receiver phones 
are connected. Receiver phones open their hotspots to distribute 
material further, creating two virtual networks on the same NIC 
for receiving and broadcasting. Data is sent from Wi-Fi to 
virtual network (hotspot) using BP. 

The application server starts its UDP port on 1002 for 
streaming, waits for clients to connect, adds client sockets to 

the list, and creates for connected clients. The receiver 
automatically generates a UDP client request on the given IP 
address for port 1002 when they click on any listed device. If 
the success handshake message is received, the client waits for 
data, otherwise they try to reconnect with to be a sender, the 
client launches a mobile hotspot on the same port as a server 
with a separate network and open handshake port (1001). 

Server-side screen images are compressed and transformed into 
byte arrays for socket transmission. The list of all clients 
receives the frame size after converting it to a byte array. Any 
disconnected or failed client socket will be deleted from the list. 
In case of sender disconnections or failures, the client will 
allocate the frame size for packet reception and retry to connect. 
The server sends the byte array to all client sockets. All 
disconnected clients will be removed by the sender. The server 
repeats till session end. Frames are turned into images at the 
client end to display and transmit to other clients and vice versa. 
Figure 3.0 shows the entire communication control-flow, while 
figure 4.0 shows model workflow. 

 
Figure 3.0 Control flow of communication. 

Figure 5.0 shows the basic functionality of existing bridging 
technique, where bridge device notes mac addresses of all 
connected devices, station B requests data, bridge device notes 
device mac address at physical layer, and bridge device 
forwards packet to station A. It returns to mac address device 
after obtaining response. This technique uses request-response. 
BP creates the client list based on handshake requests and 
broadcasts data without client requests or mac addresses. 
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Figure 4.0 Bridge protocol workflow diagram. 

 
Figure 5.0 Networks Bridge Methods. 

Table 1.0 Benchmark experiment parameters. 

Experiment Parameters Values Units 

No. of max devices connect on single 
hotspot  

10 - 

Max Number of frames 25 fps 

Sender node buffer none - 

Receiver node buffer none - 

Data type Binary Bytes 

Packet receive Acknowledgment  none - 

Frame size ~30-50 KB 

Max number of extended node nth - 

Shortest path decision  N/A - 

Mobility handling none - 

Bridging Protocol PTMP - 

Wireless Fidelity Standard 802.11b/g/n - 

Network Protocol TCP/UDP - 

Network DHCP built-in - 

Network Frequencies 2.4-5 GHz 

Wireless Security none - 

Network Bandwidth 54-150 Mbps 

 

The default experimental settings are presented in table 1.0, 
while additional parameters utilized in the proposed framework 
may be adjusted in existing approaches or redefined for this 
experiment. 

Dataset 
A dataset is based on the number of frames sent between 
devices and the delay between them. This dataset also shows 
delay while sending data from a second phone to a third and 
when the number of devices increases. Android logcat collects 
data when phone is linked to Android Studio and all logs are 
monitored on the console. When device sends packet, console 
shows time, and receiving frame shows time successfully. Time 
deference is device-to-device delay. 

EXPERIMENTAL RESULTS & DISCUSSION: 
 

Results from android phone experiments are presented in 
tables, graphs, and detailed explanations. Based on results, the 
description examines the variables to use the advised BP.     

Receiver-Multiple-Node Sharing 
When sharing a mobile screen across many phones, data 
packets are delayed by the application. Which depends on 
packet size and node count.  

To calculate the overall delay between sharing and receiving 
mobiles, Data packets of different frame sizes are captured and 
delivered to quantify the time in capturing, converting, 
transmitting, receiving, rendering, and displaying. Table 2.0 
demonstrates delays for up to 3 linked devices with 50KB 
frames. Figure 6.0 depicts the second delay between three 
50Kb-frame phones on the same network. 

Figure 6.0 and table 2.0 demonstrate that the first, second, and 
third phones delay 0.13, 0.17, and 0.24 seconds when sending 
a 50Kb frame. The results showed that sending and receiving 
mobiles stream less video with a time delay factor. Second 
receiver delay increased by 0.04 seconds, and third receiver 
delay increased by 0.07 seconds. 

The scheduled task between client lists and the FIFO 
mechanism for broadcasting caused this delay. The second 
phone waited until the frames were completely sent to the first 
phone, therefore the latency increased as the number of devices 
increased. Sending 5 50Kb frames delays the first receiver 0.16, 
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the second and third 0.19 and 0.29. These estimated results 
showed that the delay increased by 0.03 seconds from the first 
receiver and 0.10 seconds when the third receiver received 
frames from the second receiver. Sending 10 50Kb frames 
delays the first, second, and third by 0.18, 0.25, and 0.34 
seconds. Thus, second and third have 0.08 and 0.09 delays, 
respectively. Although for 15 50Kb frames, the first, second, 
and third delay 0.23, 0.32, and 0.38 seconds. First and second 
are 0.09 apart, and second and third are 0.06 apart. When 
sending 20 50Kb frames, the first delay is 0.26 seconds, the 
second 0.37, and the third 0.43. Between first and second, the 
delay is 0.11; between second and third, 0.16. For 25 50Kb 
frames, the first delay is 0.28 seconds, while the second and 
third are 0.41 and 0.43. With 30 50Kb frames, the first delay is 
0.32 seconds, the second 0.49, and the third 0.53. As per Table 
4. One delay difference between the 1st and 2nd phones is that 
the 1st phone had to process some preliminary tasks as a sender 
node, such as frame capturing, rendering, and transferring, 
which took longer to send a frame than the 2nd or 3rd phones. 
The delay is only for data transfer. 

 
Figure 6.0 50KB frame sending graph 

Table 2.0 Dataset of frame 50KB  

One phone to other 
Frame 
50 
KB 

Delay in sec for 
1 Phone 

Delay in sec for 
2 Phone 

Delay in sec for 
3 Phone 

1 0.13 0.17 0.24 
5 0.16 0.19 0.29 
10 0.18 0.25 0.34 
15 0.23 0.32 0.38 
20 0.26 0.37 0.43 
25 0.28 0.41 0.47 
30 0.32 0.49 0.53 

 

Figure 7.0 depicts the second delay between three 30Kb-frame 
phones on the same network. 

Figure 7.0 and table 3.0 demonstrate that the first, second, and 
third phones delay 0.07, 0.11, and 0.14 seconds while sending 

a 30Kb frame. The results showed that sending and receiving 
mobiles stream less video with a time delay factor. Second 
receiver delay increased by 0.04 seconds, and third receiver 
delay increased by 0.03 seconds. By delivering 5 30Kb frames, 
initial receiver delays are 0.09, second and third 0.13 and 0.19. 
These estimated results showed that the delay increased by 0.04 
seconds from the first receiver and 0.06 seconds when the third 
receiver received frames from the second receiver. Sending 10 
30Kb frames delays the first, second, and third by 0.12, 0.17, 
and 0.22 seconds. First and second are 0.05 apart, and second 
and third are 0.05. For 15 30Kb frames, the first, second, and 
third phones had delays of 0.14, 0.21, and 0.27 seconds. A 0.07 
delay separates the first and second, while 0.06 separates the 
second and third. When sending 20 30Kb frames, the first delay 
is 0.17 seconds, the second 0.24, and the third 0.30. Between 
second and third, the delay increased 0.06 from 0.07. For 25 
30Kb frames, the first delay is 0.20 seconds, while the second 
and third are 0.26 and 0.33. With 30 30Kb frames, the first 
delay is 0.24 seconds, the second 0.29, and the third 0.36. 
Table-3.0 displays delay behavior for 3 linked devices with 
30KB frames. 

 
Figure 7.0 Sending graph for 30KB frame. 

Table 3.0 Dataset of 30KB frame. 

One phone to other 
Frame 
30KB 

Delay in sec 
for 

1 Phone 

Delay in sec for 
2 Phone 

Delay in sec for 
3 Phone 

1 0.07 0.11 0.14 
5 0.09 0.13 0.19 

10 0.12 0.17 0.22 
15 0.14 0.21 0.27 
20 0.17 0.24 0.30 
25 0.20 0.26 0.33 
30 0.24 0.29 0.36 

Figure 8.0 depicts the second delay between three 20Kb-frame 
phones on the same network. Figure 8.0 demonstrate that the 
first, second, and third phones send 20Kb frames with 0.04, 
0.08-, and 0.15-seconds delays. The results showed that 
sending and receiving mobiles stream less video with a time 
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delay factor. Second receiver delay increased by 0.04 seconds, 
and third receiver delay increased by 0.08 seconds. First 
receiver delay is 0.06 for 5 frames of 20Kb, second and third 
receiver delays are 0.10 and 0.18.  

These estimated results showed that the delay increased by 0.04 
seconds from the first receiver and 0.08 seconds when the third 
receiver received frames from the second receiver. Sending 10 
20Kb frames delays the first, second, and third by 0.09, 0.13, 
and 0.20 seconds. Thus, second and third phones have 0.05 and 
0.07 delays between them. For 15 20Kb frames, the first, 
second, and third have 0.11, 0.16-, and 0.23-seconds delays. 
The first and second are 0.05 apart, and the second and third are 
0.07 apart. When 20 frames of 20Kb are sent, the first delay is 
0.14 seconds, the second 0.18, and the third 0.27. The delay 
between first and second is 0.04 and between second and third 
is 0.09. For 25 frames of 20Kb, the first delay is 0.16 seconds, 
the second and third 0.20 and 0.29. With 30 20Kb frames, the 
first delay is 0.19 seconds, the second 0.25, and the third 0.32. 
For 3 linked devices with 20KB frames, Table-4.3 displays 
delay behavior. 

 
Figure 8.0 20KB sending frame. 

Figure 9.0 depicts the second delay between three 10Kb-frame 
phones on the same network. Figure 9.0 and table 4.0 indicate 
that the first, second, and third phones delay 0.02, 0.05, and 
0.10 seconds while sending a 10Kb frame. When sending and 
receiving videos from mobiles, the time delay factor reduces 
video streaming. Second receiver delay increased by 0.03 
seconds, and third receiver delay increased by 0.05 seconds. 

First receiver has 0.04 delay, second 0.08, and third 0.13 for 5 
frames of 10Kb. This estimate reveals that the second receiver 
is 0.04 seconds slower than the first. Third receiver delays are 
0.05 seconds. First, second, and third delays in seconds are 
0.07, 0.10, and 0.16 for 10Kb frames. Thus, delay between first 
and second is 0.03 while second and third is 0.06. The first 
delay in seconds is 0.09, the second and third are 0.13 and 0.19 
with 15 frames of 10Kb. The delay between first and second is 
0.04 and second and third is 0.06. In 20 frames of 10Kb, the 

first delay is 0.12 seconds, the second 0.15, and the third 0.22. 
The delay between first and second is 0.03 and second and third 
0.07. With 25 10Kb frames, the first delay is 0.14 seconds, the 
second 0.18, and the third 0.24. For 30 frames of 10Kb, first, 
second, and third delays are 0.17, 0.21, and 0.27 seconds. Table 
4.4 exhibits delay behavior for 3 10KB-frame devices. 

 
Figure 9.0 Sending graph of 10KB. 

Table 4.0 Dataset frame for 10kb. 

One phone to other 
Frame 10 

KB 
Delay in sec for 

1 Phone 
Delay in sec for 

2 Phone 
Delay in sec for 

3 Phone 
1 0.02 0.05 0.1 
5 0.04 0.08 0.13 
10 0.07 0.10 0.16 
15 0.09 0.13 0.19 
20 0.12 0.15 0.22 
25 0.14 0.18 0.24 
30 0.17 0.21 0.27 

 
In seconds, Figure 10.0 depicts the delay between receiver 
phones and the following three phones on the same network 
with 50Kb frame size. From figure 10.0 and table 5.0, sending 
a 50Kb frame at once delays the receiver phone by 0.21 seconds 
to the first phone, 0.29 seconds to the second, and 0.35 seconds 
to the third.  
 
The video streaming between sending and receiving mobiles 
with time delay factor is less from sender to first receiver, but 
it increases by 0.08 seconds to second receiver and 0.06 
seconds to third receiver. Sending 5 frames of 50Kb delays the 
first receiver 0.27, the second 0.33, and the third 0.41. The 
second receiver's estimated delay is 0.10 seconds longer than 
the first. Delay increases by 0.08 seconds when the third 
receiver receives the frame. It concludes that sending frames to 
the third recipient increases delay. After sending 10 50Kb 
frames, the first delay is 0.29, the second 0.35, and the third 
0.47. First and second phones are 0.06 apart, and second and 
third are 0.12. For 15 50Kb frames, the first delay is 0.32 
seconds, the second and third 0.39 and 0.51. The delay ratio 
between first and second is 0.07 while second and third is 0.12. 
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With 20 50Kb frames, the first phone delay is 0.36 seconds, the 
second 0.44, and the third 0.56.  
 
The delay ratio between first and second is 0.08 while second 
and third is 0.10. First delay in seconds is 0.38, second 0.51, 
and third 0.62 when sending 25 50Kb frames. First delay in 
seconds is 0.42, second phone delay is 0.55, and third delay is 
0.67 for 30 frames of 50Kb. Table 5.0 illustrates the latency 
from receiving device to following connected devices up to 3 
with 50KB frame size. 
 

 
Figure 10.0 50KB frame sending Graph. 

Table 5.0 Dataset for frame 50KB. 

One phone to other 
Frame 
50KB 

Delay in sec for 
1 Phone 

Delay in sec for 
2 Phone 

Delay in sec for 
3 Phone 

1 0.21 0.29 0.35 
5 0.27 0.33 0.41 
10 0.29 0.35 0.47 
15 0.32 0.39 0.51 
20 0.36 0.44 0.56 
25 0.38 0.51 0.62 
30 0.42 0.55 0.67 

 
See Figure 11.0 for the delay in seconds between the receiver's 
phone and the next three on the same network with 100Kb 
frame size. Figure 11.0 and table 6.0 demonstrate that sending 
100Kb frames at once delays the receiver phone by 0.25 
seconds for the first phone, 0.32 for the second, and 0.38 for the 
third. The time delay factor reduces video streaming between 
sending and receiving mobiles while sending to the first 
recipient, increases by 0.07 seconds for the second receiver, and 
increases by 0.06 seconds for the third receiver. Sending 5 
frames of 100Kb delays the first receiver 0.29, the second 0.36, 
and the third 0.44. This estimate reveals that the second receiver 
is 0.07 seconds slower than the first. Frame delay increases to 
0.08 seconds when the third receiver receives. Thus, sending 
frames to the third recipient increases delay. First delay in 
seconds is 0.33, second 0.41, and third 0.48 for 10 100 Kb 
frames. The delay between first and second is 0.08 and second 
and third is 0.07.  

 
First, second, and third delays in seconds are 0.37, 0.46, and 
0.53 for 15 frames of 100 Kb. By delivering 20 100 Kb frames, 
the first delay is 0.41 seconds, the second 0.5, and the third 
0.58.  The first delay in seconds for 25 100 Kb frames is 0.45, 
the second 0.53, and the phone 0.64. With 30 frames of 100, Kb 
first and second delays in seconds are 0.51 and 0.55, while third 
is 0.68. Table-4.10 illustrates the delay from receiving device 
to following connected devices up to 3 with 100 KB frame size. 
 

 
Figure 11.0 100KB sending frame graph. 

Table 6.0 100KB frame Dataset  

One phone to other 
Frame 

100 KB 
Delay in sec 

for 
1 Phone 

Delay in sec 
for 

2 Phone 

Delay in sec 
for 

3 Phone 
1 0.25 0.32 0.38 
5 0.29 0.36 0.44 
10 0.33 0.41 0.48 
15 0.37 0.46 0.53 
20 0.41 0.5 0.58 
25 0.45 0.53 0.64 
30 0.51 0.55 0.68 

 
Figures 12.0 and 13.0 compare delays in three mobile phones 
that deliver frames from the first phone. The graph also shows 
the frame size and a bar showing how frame size and number 
of frames affect delay time. 
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Figure 12.0 Detailed comparison according to frame size from sender phone. 

 

 
 
  Figure 13.0 Detailed comparison according to frame size from receiver phone 

The results show that the delay factor between connected and 
sending phones varies with frame size and phone count. Single-
frame streaming reduces video delay but lowers quality. As the 
number of frames increases, quality improves but delay 
increases. A 50KB frame streamed between three phones has a 
minimal latency for the first. The second increases, but the third 
increases delay but improves quality. So, the conclusion is that 
delivering more frames between connected phones improves 
streaming, however delivering one frame reduces delay but 
increases quality and delay. 

CONCLUSION: 
 
This study examined the evolving nature of digital 
communication, with particular focus on the indisputable 
impact of live streaming in today's technology-driven culture. 
The submitted thesis, titled "Sharing Revolution with 
Distributed Mobile Streaming Bridge Protocol," goes deeply 
into the nuances of node-to-multi-node communication in a 
server-less mobile phone context. 

Based on our findings, it may be possible to forego using 
centralized servers and other network infrastructure. At the 
heart of this system is the Bridge Protocol (BP), which emerges 
as a critical mediator, acting across two networks on the same 

NIC and extending its capabilities between phones. This 
protocol not only improves communication, but also 
fundamentally alters how mobile interactions are designed and 
implemented. The given algorithm/framework illustrates a 
dynamic shift in how several mobile phones can communicate 
and share screens via the hotspot feature. 

Future Directions: 
While the current implementation of the Bridge Protocol is 
groundbreaking, it does pose some difficulties. Delay, mobility, 
and redundancy must all be optimized for. Research going 
forward can concentrate on optimizing the algorithm to reduce 
lag time in communications, increase throughput, and 
incorporate autonomous mobility features. To further facilitate 
node-to-multi-node communication, it is important to 
emphasize more reliable failure detection tools and proactive 
prevention techniques. 

Given the dynamic nature of the technology industry, this study 
has the potential to pave the way for robust, efficient, and 
decentralized mobile communication systems in the years to 
come. 
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