
International Journal of Emerging Engineering and Technology (IJEET)
ISSN (e): 2958-3764
Volume: 2, Number: 1, Pages: 99- 109, Year: 2023

99 This work is licensed under a Creative Commons AttributionShareAlike4.0 International License, which permits
 Unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Innovation Beyond Servers: A Bridge Protocol
Framework for Mobile Streaming

Arslan Nasir1, Mirza Adnan Baig1, M. Saqib Rehan1, Abdullah Haider1, Muhammad Rizwan2

1 The Islamia University Bahawalpur, Pakistan
2 Khawaja Freed University of Engineering & Information Technology, Pakistan
Corresponding author: email: m.arslan146p@gmail.com
Received: 15/01/2023, Revised: 25/03/2023, Accepted: 20/06/2023

ABSTRACT:In the ever-expanding realm of live video streaming applications, the demand for real-time content delivery has
reached unprecedented heights. Yet, challenges persist, tethered to the uncertainties of internet availability and the constraints
of server-based resource optimization. As the appetite for efficient and scalable live video streaming continues to surge, the call
for inventive solutions that break free from conventional server-centric systems grows stronger. Enter the realm of serverless
streaming—a groundbreaking opportunity to surmount these challenges. At the core of this research lies a mission to confront
the shackles imposed by internet dependency and the limitations of server-based frameworks in the context of live video
streaming. Our primary aim is to usher in a new era of content sharing in a serverless environment, unlocking the potential to
extend mobile device connectivity and transcend bandwidth constraints. The proposed solution introduces an ingenious protocol
spanning from the Data Link Layer (DLL) to the Application Layer (AL). Through the establishment of two virtual networks
and the application of the Bridge Protocol (BP), a bridge emerges, seamlessly connecting them. This framework empowers the
sharing of a mobile device's display to other devices via a hotspot, liberating the process from the confines of an internet
connection. Preliminary results affirm the efficiency of our framework in transferring the Application Layer (AL) display from
one mobile device to others. This achievement is made possible by binding two virtual networks to the same NIC using our
bridge protocol. The spotlight is on screen sharing through image streaming between devices, all achieved independent of an
internet connection. This research represents a pioneering approach to mobile streaming, placing a distinct focus on peer-to-
peer (P2P) technology. It proposes an unprecedented fusion of live video streaming dynamics with the principles of P2P video
streaming, culminating in a method that optimizes device interconnection, unshackled from the constraints of traditional
internet-based systems.
Keywords: Bridge Protocol, Distributed Mobile Streaming, Serverless Environment.

INTRODUCTION:
In the age of digitization, our lives are seamlessly interwoven
with the presence of mobile devices, shaping the very fabric of
our daily existence. These devices, in their swift evolution,
have not only revolutionized communication but have also
redefined the way we engage with content. Among the myriad
functionalities that have captured our collective fascination,
live streaming stands out as a meteoric phenomenon,
solidifying its status as a highly sought-after feature on mobile
platforms. As technology propels forward, we find ourselves at
a crossroads, witnessing a gradual departure from traditional
systems, particularly those rooted in server-driven
architectures. This shift is propelled by an unceasing demand
for decentralization, the quest for reduced latency, and the
pursuit of more efficient resource utilization.

The global digital communication landscape is undergoing a
profound transformation[1]. What was once considered a
luxury, video streaming has now become an integral part of our

digital experience. Countless applications facilitate real-time
video broadcasts to millions worldwide. Yet, like any
technology in its zenith, live streaming encounters its unique
set of challenges[2].

At the core of our digitally connected society lies the essential
thread of internet connectivity. But what happens when this
thread is disrupted or unavailable? Can live video streaming
still be a viable possibility? More crucially, can it maintain
efficiency and robustness in the face of such challenges? Our
research embarks on a journey into this niche yet vital realm.
The pressing issues of internet availability constraints and
server optimization demand urgent solutions. In a world
dominated by mobile devices, the vision of a server-less
environment for live video sharing presents an alluring and
tantalizing alternative[3].

mailto:m.arslan146p@gmail.com

 100

Study aim:
At the heart of our research lies a visionary mission: to forge a
cutting-edge framework or protocol that liberates users from
the shackles of internet dependence. Our aim is to empower
individuals to seamlessly share and distribute content in a realm
where connectivity barriers dissolve, harnessing the power of a
server-less environment facilitated by mobile hotspots. In this
transformative landscape, our goal extends beyond mere
distribution; we envision a paradigm shift in content
dissemination through the art of multicasting, where each node
becomes a vibrant source of shared experiences and
information. This research endeavors to pioneer a future where
connectivity is not a limitation but a gateway to a boundless
exchange of knowledge and experiences.

Problem Statement:
At the crux of our present research lies a formidable challenge:
the absence of a viable solution for real-time video sharing
within a server-less environment, utilizing the dynamic
capabilities of mobile hotspots and implementing multicasting
of identical content from every node. While existing solutions
diligently tackle the optimization of network and server
resources, they fall short in addressing the critical challenges
posed by sharing content in the absence of an internet
connection, as well as the untapped potential for multicasting
within these unique environments. Our research boldly
ventures into uncharted territory, aiming not only to bridge this
gap but to redefine the landscape of live video sharing in server-
less ecosystems.

Research Objectives:
At the core of our research endeavors is a visionary goal: to
craft a pioneering framework enabling mobile screen sharing
without the constraints of internet connectivity within a server-
less environment. This ambitious objective unfolds through a
meticulously designed approach, where innovation converges
with practicality. Our strategy encompasses the following key
elements:

1. Creation of a Virtual Network: We embark on the journey by
establishing a virtual network for mobile devices, ingeniously
leveraging the power of hotspots. This foundational step lays
the groundwork for connectivity that transcends traditional
boundaries.

2. Bridge Protocol (BP) Implementation: To orchestrate seamless
communication within these virtual networks on a single
Network Interface Card (NIC), we introduce the Bridge
Protocol (BP). This intelligent protocol becomes the linchpin,
fostering efficient and effective data exchange.

3.Utilization of TCP and UDP: In the intricate dance of data
packet transmission between connected devices, we employ the
robust Transmission Control Protocol (TCP) and the nimble
User Datagram Protocol (UDP). This dynamic duo ensures a

reliable and swift exchange of information, adapting to the
unique needs of our server-less environment.

4.Expanding Device Limits and Bandwidth: We push the
boundaries of connected devices and bandwidth by ingeniously
recreating virtual networks on each mobile device. This
ingenious approach aims to enhance the scalability and
resilience of our mobile screen sharing ecosystem.

5.Shift towards Broadcasting: Finally, we revolutionize the
sharing mechanism itself by embracing broadcasting. This
strategic shift ensures seamless content distribution among
connected devices, fostering a harmonious and efficient sharing
experience.

In essence, our research aspires not only to break the barriers of
conventional mobile screen sharing but to redefine the very
landscape of how we envision and implement connectivity in a
server-less world. Through these innovative strategies, we chart
a course toward a future where mobile screen sharing becomes
an effortlessly accessible and ubiquitous experience.

Proposed Methodology:
This research venture is centered around the conception and
implementation of an innovative protocol, poised for
experimentation on Android mobile devices to revolutionize
communication. Illustrated in Figure 1.1 is the intricate
functionality of the envisioned Bridge Protocol, illustrating the
creation of two distinct virtual networks on a single Network
Interface Card (NIC) within a mobile device. Each of these
networks boasts its own identical configurations, yet direct
communication between them remains elusive. The crux of this
challenge is the impetus behind the creation of the Bridge
Protocol (BP), serving as the linchpin for inter-network
communication and facilitating the seamless transfer of video
frames from one network's Application Layer (AL) to another.

The experimental phase unfolds on the Android platform,
where an ad hoc network is forged using the mobile hotspot.
All recipient mobile devices converge within this network, with
each recipient joining two virtual networks. One network links
to the sender node, while the other is autonomously created
within the recipient device. The Bridge Protocol commences its
work, bridging these networks within the device and fostering
communication between them. All usable ports of one network
ingeniously bridge to the other, ensuring a cohesive network
architecture.

The Bridge Protocol is meticulously crafted using both TCP
and UDP, with TCP facilitating the scanning of the receiving
mobile device's network. Acknowledgment is dispatched upon
packet reception, prompting a search via ping on each IP port
to identify live IPs within range. The live IP, indicative of the
sender mobile device, awaits connections on an open port, and
Figure 1 exemplifies the seamless bridging of each mobile
network to its successive device while concurrently searching

 101

its connected network for live IPs. Upon acknowledgment, the
identified IP is cataloged in the client-side list. Subsequently, a
handshake request is initiated, and if accepted by the sender,
the device becomes an integral part of that network, initiating
seamless communication. In the receiving node, dual networks
exist—one in which it is connected and the other autonomously
created. The Bridge Protocol adeptly unites these networks,
fostering a cohesive and integrated communication
environment. Moreover, experimental results manifest through
an exploration of video stream quality, contingent upon the
number of connected mobile devices. Initial experiments
involve three mobile devices sharing a single network for
communication, with subsequent extensions to record video
quality, delay time, and mobile performance as the number of
connected devices proliferates. This comprehensive approach
ensures a thorough understanding of the protocol's impact on
the robustness and quality of mobile communication.

LITERATURE REVIEW:
Serverless edge computing represents an evolving paradigm
that extends the advantages of serverless computing to the
dynamic edge-cloud continuum. This paper introduces faas-
sim, an innovative simulation framework tailored to address the
unique challenges of serverless edge computing platforms. In
serverless computing, the abstraction of infrastructure from
application developers places the responsibility of efficient
management on platform operators. However, the transition to
edge computing amplifies this challenge due to the absence of
reference architectures, design tools, and standardized
benchmarks[4].

Faas-sim bridges this gap by offering a threefold solution: (a) a
generalized model of serverless systems built on the function-
as-a-service abstraction, (b) a trace-driven stochastic discrete-
event simulation engine using real-world edge computing
testbed data, and (c) a network topology generator to simulate
distributed and heterogeneous edge-cloud systems. The
contributions of faas-sim extend beyond simulation,
encompassing a performance and resource modeling approach
based on real profiling experiments. The framework includes a
flexible codebase in Python, integrating seamlessly with data
science tools and forming a key component of the broader
Edgerun project—an ecosystem supporting researchers and
practitioners in edge-cloud experiments.

Faas-sim's impact is multifaceted, providing a robust
foundation for researchers and platform designers to develop,
implement, and evaluate novel serverless edge platforms. The
framework allows for the exploration of function adaptations,
scheduling algorithms, and load-balancing strategies. Notably,
faas-sim has been employed successfully in diverse scenarios,
from scheduling performance comparisons to large-scale
distributed edge computing simulations. As part of ongoing
work, the integration of faas-sim into the control loop of
operating serverless systems is explored, offering the potential

for real-time refinement of simulation models based on trace
data from actual workload executions[5].

faas-sim emerges as a pivotal tool in the realm of serverless
edge computing, offering a versatile simulation environment
backed by real-world data. Its utility extends to both practical
experimentation and theoretical exploration, contributing
significantly to the advancement of this emerging and dynamic
field[6].

In the swiftly evolving landscape of Information and
Communication Technologies (ICT), the integration of modern
technologies is reshaping industries, fostering dynamic value
chains, and facilitating collaboration among various
stakeholders. A compelling example is the emergence of Smart
Tourism, where ICT is leveraged to craft immersive and
sustainable tourism experiences. However, the decentralized
nature of these environments presents a persistent challenge—
harmonizing diverse services and data across disparate
administrative domains. In response, we introduce APERTO, a
decentralized and distributed architecture underpinned by
APERTO FaaS, a Serverless platform. This platform
streamlines business logic prototyping, reduces entry barriers,
and minimizes development costs. APERTO addresses the
intricacies of distributed and heterogeneous environments by
employing asynchronous and transparent communications
between components, thus optimizing solutions for seamless
data and service integration.

At its core, APERTO tackles critical issues, providing scalable
mechanisms for function composition, end-to-end Quality of
Service (QoS) slices, uniform access to diverse data sources,
and a decentralized approach for resource access verification.
APERTO FaaS, with its innovative features like (zero) fine-
grained scaling and reduced management overhead, signifies a
significant advancement in creating accessible and cost-
efficient solutions in the realm of ICT-driven collaboration and
integration. This architecture stands as a transformative step
toward a more integrated and streamlined future for industries
embracing the potential of Information and Communication
Technologies[7].

Introduces Portals, a novel serverless, distributed programming
model that seamlessly integrates the exact-once processing
guarantees of stateful dataflow streaming frameworks with the
compositional, message-driven nature of actor frameworks.
The core elements of computation in Portals, termed atomic
streams, enable the construction of decentralized applications
dynamically, ensuring scalability on demand while adhering to
strict atomic processing guarantees. The model is versatile,
supporting various distributed programming paradigms and use
cases. The paper outlines Portals' capabilities, presenting
programming model invariants and the associated system
methods that uphold them[8]. Key contributions include
transactional processing guarantees, intuitive data-parallel

 102

service composition, and use cases ranging from Sagas to
GDPR-support, showcasing the model's generality and
effectiveness. A prototype implementation is discussed,
providing insights into the design and performance evaluation.

The architecture of Portals comprises the portals programming
platform and the portals runtime, featuring components such as
the scheduler, registry, atomic streams, workflows, and portals.
The implementation leverages distributed transactional logs
like Apache Kafka and Pravega. The model is presented as a
high-level physical plan, demonstrating its end-to-end
processing guarantees and scalable data-parallel execution.
Portals represents a significant advancement, combining
diverse features into a unified programming model, making it a
promising alternative for developing scalable stateful serverless
applications with guaranteed atomic processing. Future work
includes completing the distributed implementation, refining
operational semantics, providing a sound type system, and
exploring extensions such as dynamic atom splitting and
fusing, along with actor-like references[9].

This work introduces Crucial, a system designed to address the
challenges of building highly-parallel stateful serverless
applications, particularly those requiring fine-grained support
for mutable state and synchronization, such as machine
learning (ML) and scientific computing. Crucial seamlessly
integrates the simplicity of serverless computing with the
scalability of Function-as-a-Service (FaaS) platforms.
Leveraging a distributed shared memory layer, Crucial enables
the effortless porting of multi-threaded code bases to serverless
environments, unlocking the scalability and cost-effectiveness
of FaaS platforms[10]. The system is validated through micro-
benchmarks and the implementation of various stateful
applications, including ML algorithms like k-means and
logistic regression. Evaluation results show Crucial
outperforming or performing comparably to Apache Spark at a
similar cost, with applications achieving up to 30% higher
speed than dedicated high-end servers. Crucial's open-source
implementation, consisting of around 10K SLOC, is available
online, showcasing its versatility and practicality in serverless
programming[11].

The architecture of Crucial, discussed in detail, incorporates a
dynamic shared object (DSO) layer, written a top the Infinispan
in-memory data grid. A Crucial application, written in Java,
utilizes Apache Maven for compilation and dependency
management. The system employs abstractions for distributed
parallelism, including an innovative Serverless Executor
Service and Iterative Task[12]. AWS Lambda functions
facilitate the execution of cloud threads. The system
demonstrates efficient handling of distributed references,
synchronization objects, and dynamic parallelism. The
evaluation further explores the runtime of Crucial through
micro-benchmarks, fine-grained updates to mutable data, and
porting of state-of-the-art ML libraries to serverless. The study

aims to assess Crucial's ease of programming, benefits in terms
of serverless capabilities, efficiency, and cost-effectiveness for
both serverless-native and ported applications[13].

Explores the cost implications of choosing between distributed
stream processing (DSP) and Function-as-a-Service (FaaS) for
cloud event processing applications. Despite architectural
differences, both DSP and FaaS can model loosely-coupled job
graphs, making them applicable for real-time event processing.
The study implements stateless and stateful workflows using
the Theodolite benchmarking suite on cloud FaaS and DSP
platforms, considering factors such as application type, cloud
service provider, and runtime environment[14]. The evaluation
provides decision guidelines for cloud engineers based on a
comprehensive analysis of the cost-effectiveness of different
deployment scenarios.

The benchmarking suite involves the implementation of use
cases for DSP and FaaS, emphasizing adherence to best
practices and allowing for broader evaluations beyond DSP vs.
FaaS. Load generation is achieved through a dedicated load
generator within the same cloud datacenter, emulating sensors
with varying loads. The benchmark aims to understand the cost
implications of operating applications under different data rates
rather than focusing on scalability or elasticity[15].

The extensive evaluation section presents a baseline
comparison between Google Cloud Functions and Apache
Flink, detailing implementations for stateless and stateful use
cases. The results demonstrate that FaaS is economically
advantageous for stateless applications with low to medium
event arrival rates, while the cost of database access in FaaS
becomes a limiting factor for stateful applications with higher
event processing rates. The study provides insights into the cost
breakdown, showcasing the interplay between fixed costs,
variable costs per request, and batched variable costs in DSP
and FaaS deployments[16].

Figure 1.0 Contextual Diagram.

This research uses a framework and UDP socket-based protocol
to transfer screen capture from one phone to another. An

 103

Android app with sender and receiver modes is used for this
experiment. BP is a framework that uses existing mobile
technology as a base layer to communicate and broadcast data
from sender to receiver. It also bridges two independent
networks on the same NIC for further distribution, as shown in
figure 3.0.

Figure 2.0 depicts a server-less, internet-free working
paradigm. As shown in figure 2.0, one sender opens its hotspot
on which other devices connect to WIFI and open their own
hotspots with different networks. Bridging combines two data
link layer networks by sending requests to the destination
address and responding to data based on MAC addresses as
shown in figure 4.0. As shown in figure 3.1, suggested BP acts
as middleware, broadcasting data unidirectionally via a client
socket. This is extended to the nth node; however, the number
of devices increases the delay.

Figure 2.0 Bridge-Network.

The complete framework also includes android-specific
communication norms and restrictions. Frameworks capture
frames based on screen resolution in the application layer and
compress them using bitmap compression on the presentation
layer. The session layer handles the user connection as a socket
connection and manages a user list. Data is then sent to the
client using FIFO. The network layer controls connected device
data flow and failover connection management, whereas the
data link layer handles bridging network and data forwarding
regulations. Since we don't have bandwidth congestion, the data
link layer buffer isn't used to deliver pure real-time streaming.
All additional default network rules and approaches.

Figure 2.0 illustrates BP's whole operation. Sender phone
initiates hotspot on dynamic network where all receiver phones
are connected. Receiver phones open their hotspots to distribute
material further, creating two virtual networks on the same NIC
for receiving and broadcasting. Data is sent from Wi-Fi to
virtual network (hotspot) using BP.

The application server starts its UDP port on 1002 for
streaming, waits for clients to connect, adds client sockets to

the list, and creates for connected clients. The receiver
automatically generates a UDP client request on the given IP
address for port 1002 when they click on any listed device. If
the success handshake message is received, the client waits for
data, otherwise they try to reconnect with to be a sender, the
client launches a mobile hotspot on the same port as a server
with a separate network and open handshake port (1001).

Server-side screen images are compressed and transformed into
byte arrays for socket transmission. The list of all clients
receives the frame size after converting it to a byte array. Any
disconnected or failed client socket will be deleted from the list.
In case of sender disconnections or failures, the client will
allocate the frame size for packet reception and retry to connect.
The server sends the byte array to all client sockets. All
disconnected clients will be removed by the sender. The server
repeats till session end. Frames are turned into images at the
client end to display and transmit to other clients and vice versa.
Figure 3.0 shows the entire communication control-flow, while
figure 4.0 shows model workflow.

Figure 3.0 Control flow of communication.

Figure 5.0 shows the basic functionality of existing bridging
technique, where bridge device notes mac addresses of all
connected devices, station B requests data, bridge device notes
device mac address at physical layer, and bridge device
forwards packet to station A. It returns to mac address device
after obtaining response. This technique uses request-response.
BP creates the client list based on handshake requests and
broadcasts data without client requests or mac addresses.

 104

Figure 4.0 Bridge protocol workflow diagram.

Figure 5.0 Networks Bridge Methods.

Table 1.0 Benchmark experiment parameters.

Experiment Parameters Values Units

No. of max devices connect on single
hotspot

10 -

Max Number of frames 25 fps

Sender node buffer none -

Receiver node buffer none -

Data type Binary Bytes

Packet receive Acknowledgment none -

Frame size ~30-50 KB

Max number of extended node nth -

Shortest path decision N/A -

Mobility handling none -

Bridging Protocol PTMP -

Wireless Fidelity Standard 802.11b/g/n -

Network Protocol TCP/UDP -

Network DHCP built-in -

Network Frequencies 2.4-5 GHz

Wireless Security none -

Network Bandwidth 54-150 Mbps

The default experimental settings are presented in table 1.0,
while additional parameters utilized in the proposed framework
may be adjusted in existing approaches or redefined for this
experiment.

Dataset
A dataset is based on the number of frames sent between
devices and the delay between them. This dataset also shows
delay while sending data from a second phone to a third and
when the number of devices increases. Android logcat collects
data when phone is linked to Android Studio and all logs are
monitored on the console. When device sends packet, console
shows time, and receiving frame shows time successfully. Time
deference is device-to-device delay.

EXPERIMENTAL RESULTS & DISCUSSION:

Results from android phone experiments are presented in
tables, graphs, and detailed explanations. Based on results, the
description examines the variables to use the advised BP.

Receiver-Multiple-Node Sharing
When sharing a mobile screen across many phones, data
packets are delayed by the application. Which depends on
packet size and node count.

To calculate the overall delay between sharing and receiving
mobiles, Data packets of different frame sizes are captured and
delivered to quantify the time in capturing, converting,
transmitting, receiving, rendering, and displaying. Table 2.0
demonstrates delays for up to 3 linked devices with 50KB
frames. Figure 6.0 depicts the second delay between three
50Kb-frame phones on the same network.

Figure 6.0 and table 2.0 demonstrate that the first, second, and
third phones delay 0.13, 0.17, and 0.24 seconds when sending
a 50Kb frame. The results showed that sending and receiving
mobiles stream less video with a time delay factor. Second
receiver delay increased by 0.04 seconds, and third receiver
delay increased by 0.07 seconds.

The scheduled task between client lists and the FIFO
mechanism for broadcasting caused this delay. The second
phone waited until the frames were completely sent to the first
phone, therefore the latency increased as the number of devices
increased. Sending 5 50Kb frames delays the first receiver 0.16,

 105

the second and third 0.19 and 0.29. These estimated results
showed that the delay increased by 0.03 seconds from the first
receiver and 0.10 seconds when the third receiver received
frames from the second receiver. Sending 10 50Kb frames
delays the first, second, and third by 0.18, 0.25, and 0.34
seconds. Thus, second and third have 0.08 and 0.09 delays,
respectively. Although for 15 50Kb frames, the first, second,
and third delay 0.23, 0.32, and 0.38 seconds. First and second
are 0.09 apart, and second and third are 0.06 apart. When
sending 20 50Kb frames, the first delay is 0.26 seconds, the
second 0.37, and the third 0.43. Between first and second, the
delay is 0.11; between second and third, 0.16. For 25 50Kb
frames, the first delay is 0.28 seconds, while the second and
third are 0.41 and 0.43. With 30 50Kb frames, the first delay is
0.32 seconds, the second 0.49, and the third 0.53. As per Table
4. One delay difference between the 1st and 2nd phones is that
the 1st phone had to process some preliminary tasks as a sender
node, such as frame capturing, rendering, and transferring,
which took longer to send a frame than the 2nd or 3rd phones.
The delay is only for data transfer.

Figure 6.0 50KB frame sending graph

Table 2.0 Dataset of frame 50KB

One phone to other
Frame
50
KB

Delay in sec for
1 Phone

Delay in sec for
2 Phone

Delay in sec for
3 Phone

1 0.13 0.17 0.24
5 0.16 0.19 0.29
10 0.18 0.25 0.34
15 0.23 0.32 0.38
20 0.26 0.37 0.43
25 0.28 0.41 0.47
30 0.32 0.49 0.53

Figure 7.0 depicts the second delay between three 30Kb-frame
phones on the same network.

Figure 7.0 and table 3.0 demonstrate that the first, second, and
third phones delay 0.07, 0.11, and 0.14 seconds while sending

a 30Kb frame. The results showed that sending and receiving
mobiles stream less video with a time delay factor. Second
receiver delay increased by 0.04 seconds, and third receiver
delay increased by 0.03 seconds. By delivering 5 30Kb frames,
initial receiver delays are 0.09, second and third 0.13 and 0.19.
These estimated results showed that the delay increased by 0.04
seconds from the first receiver and 0.06 seconds when the third
receiver received frames from the second receiver. Sending 10
30Kb frames delays the first, second, and third by 0.12, 0.17,
and 0.22 seconds. First and second are 0.05 apart, and second
and third are 0.05. For 15 30Kb frames, the first, second, and
third phones had delays of 0.14, 0.21, and 0.27 seconds. A 0.07
delay separates the first and second, while 0.06 separates the
second and third. When sending 20 30Kb frames, the first delay
is 0.17 seconds, the second 0.24, and the third 0.30. Between
second and third, the delay increased 0.06 from 0.07. For 25
30Kb frames, the first delay is 0.20 seconds, while the second
and third are 0.26 and 0.33. With 30 30Kb frames, the first
delay is 0.24 seconds, the second 0.29, and the third 0.36.
Table-3.0 displays delay behavior for 3 linked devices with
30KB frames.

Figure 7.0 Sending graph for 30KB frame.

Table 3.0 Dataset of 30KB frame.

One phone to other
Frame
30KB

Delay in sec
for

1 Phone

Delay in sec for
2 Phone

Delay in sec for
3 Phone

1 0.07 0.11 0.14
5 0.09 0.13 0.19

10 0.12 0.17 0.22
15 0.14 0.21 0.27
20 0.17 0.24 0.30
25 0.20 0.26 0.33
30 0.24 0.29 0.36

Figure 8.0 depicts the second delay between three 20Kb-frame
phones on the same network. Figure 8.0 demonstrate that the
first, second, and third phones send 20Kb frames with 0.04,
0.08-, and 0.15-seconds delays. The results showed that
sending and receiving mobiles stream less video with a time

 106

delay factor. Second receiver delay increased by 0.04 seconds,
and third receiver delay increased by 0.08 seconds. First
receiver delay is 0.06 for 5 frames of 20Kb, second and third
receiver delays are 0.10 and 0.18.

These estimated results showed that the delay increased by 0.04
seconds from the first receiver and 0.08 seconds when the third
receiver received frames from the second receiver. Sending 10
20Kb frames delays the first, second, and third by 0.09, 0.13,
and 0.20 seconds. Thus, second and third phones have 0.05 and
0.07 delays between them. For 15 20Kb frames, the first,
second, and third have 0.11, 0.16-, and 0.23-seconds delays.
The first and second are 0.05 apart, and the second and third are
0.07 apart. When 20 frames of 20Kb are sent, the first delay is
0.14 seconds, the second 0.18, and the third 0.27. The delay
between first and second is 0.04 and between second and third
is 0.09. For 25 frames of 20Kb, the first delay is 0.16 seconds,
the second and third 0.20 and 0.29. With 30 20Kb frames, the
first delay is 0.19 seconds, the second 0.25, and the third 0.32.
For 3 linked devices with 20KB frames, Table-4.3 displays
delay behavior.

Figure 8.0 20KB sending frame.

Figure 9.0 depicts the second delay between three 10Kb-frame
phones on the same network. Figure 9.0 and table 4.0 indicate
that the first, second, and third phones delay 0.02, 0.05, and
0.10 seconds while sending a 10Kb frame. When sending and
receiving videos from mobiles, the time delay factor reduces
video streaming. Second receiver delay increased by 0.03
seconds, and third receiver delay increased by 0.05 seconds.

First receiver has 0.04 delay, second 0.08, and third 0.13 for 5
frames of 10Kb. This estimate reveals that the second receiver
is 0.04 seconds slower than the first. Third receiver delays are
0.05 seconds. First, second, and third delays in seconds are
0.07, 0.10, and 0.16 for 10Kb frames. Thus, delay between first
and second is 0.03 while second and third is 0.06. The first
delay in seconds is 0.09, the second and third are 0.13 and 0.19
with 15 frames of 10Kb. The delay between first and second is
0.04 and second and third is 0.06. In 20 frames of 10Kb, the

first delay is 0.12 seconds, the second 0.15, and the third 0.22.
The delay between first and second is 0.03 and second and third
0.07. With 25 10Kb frames, the first delay is 0.14 seconds, the
second 0.18, and the third 0.24. For 30 frames of 10Kb, first,
second, and third delays are 0.17, 0.21, and 0.27 seconds. Table
4.4 exhibits delay behavior for 3 10KB-frame devices.

Figure 9.0 Sending graph of 10KB.

Table 4.0 Dataset frame for 10kb.

One phone to other
Frame 10

KB
Delay in sec for

1 Phone
Delay in sec for

2 Phone
Delay in sec for

3 Phone
1 0.02 0.05 0.1
5 0.04 0.08 0.13
10 0.07 0.10 0.16
15 0.09 0.13 0.19
20 0.12 0.15 0.22
25 0.14 0.18 0.24
30 0.17 0.21 0.27

In seconds, Figure 10.0 depicts the delay between receiver
phones and the following three phones on the same network
with 50Kb frame size. From figure 10.0 and table 5.0, sending
a 50Kb frame at once delays the receiver phone by 0.21 seconds
to the first phone, 0.29 seconds to the second, and 0.35 seconds
to the third.

The video streaming between sending and receiving mobiles
with time delay factor is less from sender to first receiver, but
it increases by 0.08 seconds to second receiver and 0.06
seconds to third receiver. Sending 5 frames of 50Kb delays the
first receiver 0.27, the second 0.33, and the third 0.41. The
second receiver's estimated delay is 0.10 seconds longer than
the first. Delay increases by 0.08 seconds when the third
receiver receives the frame. It concludes that sending frames to
the third recipient increases delay. After sending 10 50Kb
frames, the first delay is 0.29, the second 0.35, and the third
0.47. First and second phones are 0.06 apart, and second and
third are 0.12. For 15 50Kb frames, the first delay is 0.32
seconds, the second and third 0.39 and 0.51. The delay ratio
between first and second is 0.07 while second and third is 0.12.

 107

With 20 50Kb frames, the first phone delay is 0.36 seconds, the
second 0.44, and the third 0.56.

The delay ratio between first and second is 0.08 while second
and third is 0.10. First delay in seconds is 0.38, second 0.51,
and third 0.62 when sending 25 50Kb frames. First delay in
seconds is 0.42, second phone delay is 0.55, and third delay is
0.67 for 30 frames of 50Kb. Table 5.0 illustrates the latency
from receiving device to following connected devices up to 3
with 50KB frame size.

Figure 10.0 50KB frame sending Graph.

Table 5.0 Dataset for frame 50KB.

One phone to other
Frame
50KB

Delay in sec for
1 Phone

Delay in sec for
2 Phone

Delay in sec for
3 Phone

1 0.21 0.29 0.35
5 0.27 0.33 0.41
10 0.29 0.35 0.47
15 0.32 0.39 0.51
20 0.36 0.44 0.56
25 0.38 0.51 0.62
30 0.42 0.55 0.67

See Figure 11.0 for the delay in seconds between the receiver's
phone and the next three on the same network with 100Kb
frame size. Figure 11.0 and table 6.0 demonstrate that sending
100Kb frames at once delays the receiver phone by 0.25
seconds for the first phone, 0.32 for the second, and 0.38 for the
third. The time delay factor reduces video streaming between
sending and receiving mobiles while sending to the first
recipient, increases by 0.07 seconds for the second receiver, and
increases by 0.06 seconds for the third receiver. Sending 5
frames of 100Kb delays the first receiver 0.29, the second 0.36,
and the third 0.44. This estimate reveals that the second receiver
is 0.07 seconds slower than the first. Frame delay increases to
0.08 seconds when the third receiver receives. Thus, sending
frames to the third recipient increases delay. First delay in
seconds is 0.33, second 0.41, and third 0.48 for 10 100 Kb
frames. The delay between first and second is 0.08 and second
and third is 0.07.

First, second, and third delays in seconds are 0.37, 0.46, and
0.53 for 15 frames of 100 Kb. By delivering 20 100 Kb frames,
the first delay is 0.41 seconds, the second 0.5, and the third
0.58. The first delay in seconds for 25 100 Kb frames is 0.45,
the second 0.53, and the phone 0.64. With 30 frames of 100, Kb
first and second delays in seconds are 0.51 and 0.55, while third
is 0.68. Table-4.10 illustrates the delay from receiving device
to following connected devices up to 3 with 100 KB frame size.

Figure 11.0 100KB sending frame graph.

Table 6.0 100KB frame Dataset

One phone to other
Frame

100 KB
Delay in sec

for
1 Phone

Delay in sec
for

2 Phone

Delay in sec
for

3 Phone
1 0.25 0.32 0.38
5 0.29 0.36 0.44
10 0.33 0.41 0.48
15 0.37 0.46 0.53
20 0.41 0.5 0.58
25 0.45 0.53 0.64
30 0.51 0.55 0.68

Figures 12.0 and 13.0 compare delays in three mobile phones
that deliver frames from the first phone. The graph also shows
the frame size and a bar showing how frame size and number
of frames affect delay time.

 108

Figure 12.0 Detailed comparison according to frame size from sender phone.

 Figure 13.0 Detailed comparison according to frame size from receiver phone

The results show that the delay factor between connected and
sending phones varies with frame size and phone count. Single-
frame streaming reduces video delay but lowers quality. As the
number of frames increases, quality improves but delay
increases. A 50KB frame streamed between three phones has a
minimal latency for the first. The second increases, but the third
increases delay but improves quality. So, the conclusion is that
delivering more frames between connected phones improves
streaming, however delivering one frame reduces delay but
increases quality and delay.

CONCLUSION:

This study examined the evolving nature of digital
communication, with particular focus on the indisputable
impact of live streaming in today's technology-driven culture.
The submitted thesis, titled "Sharing Revolution with
Distributed Mobile Streaming Bridge Protocol," goes deeply
into the nuances of node-to-multi-node communication in a
server-less mobile phone context.

Based on our findings, it may be possible to forego using
centralized servers and other network infrastructure. At the
heart of this system is the Bridge Protocol (BP), which emerges
as a critical mediator, acting across two networks on the same

NIC and extending its capabilities between phones. This
protocol not only improves communication, but also
fundamentally alters how mobile interactions are designed and
implemented. The given algorithm/framework illustrates a
dynamic shift in how several mobile phones can communicate
and share screens via the hotspot feature.

Future Directions:
While the current implementation of the Bridge Protocol is
groundbreaking, it does pose some difficulties. Delay, mobility,
and redundancy must all be optimized for. Research going
forward can concentrate on optimizing the algorithm to reduce
lag time in communications, increase throughput, and
incorporate autonomous mobility features. To further facilitate
node-to-multi-node communication, it is important to
emphasize more reliable failure detection tools and proactive
prevention techniques.

Given the dynamic nature of the technology industry, this study
has the potential to pave the way for robust, efficient, and
decentralized mobile communication systems in the years to
come.

REFERENCES

[1] P. R. Mahalingam, “A Conceptual Framework for Scaling
and Security in Serverless Environments Using
Blockchain and Quantum Key Distribution,” in Quantum
and Blockchain for Modern Computing Systems: Vision
and Advancements, vol. 133, A. Kumar, S. S. Gill, and A.
Abraham, Eds., in Lecture Notes on Data Engineering and
Communications Technologies, vol. 133. , Cham:
Springer International Publishing, 2022, pp. 157–182. doi:
10.1007/978-3-031-04613-1_5.

[2] A. A. Khan, A. A. Laghari, M. Shafiq, S. A. Awan, and Z.
Gu, “Vehicle to everything (V2X) and edge computing: A
secure lifecycle for UAV-assisted vehicle network and
offloading with blockchain,” Drones, vol. 6, no. 12, p. 377,
2022.

[3] S. Hu, X. Chen, W. Ni, E. Hossain, and X. Wang,
“Distributed machine learning for wireless communication
networks: Techniques, architectures, and applications,”
IEEE Commun. Surv. Tutor., vol. 23, no. 3, pp. 1458–
1493, 2021.

[4] M. Adhikari, T. Amgoth, and S. N. Srirama, “A Survey on
Scheduling Strategies for Workflows in Cloud
Environment and Emerging Trends,” ACM Comput. Surv.,
vol. 52, no. 4, pp. 1–36, Jul. 2020, doi: 10.1145/3325097.

[5] A. A. Khan, A. A. Wagan, A. A. Laghari, A. R. Gilal, I. A.
Aziz, and B. A. Talpur, “BIoMT: A state-of-the-art
consortium serverless network architecture for healthcare
system using blockchain smart contracts,” IEEE Access,
vol. 10, pp. 78887–78898, 2022.

[6] P. Raith, T. Rausch, A. Furutanpey, and S. Dustdar, “faas‐
sim : A trace‐driven simulation framework for serverless
edge computing platforms,” Softw. Pract. Exp., vol. 53,
no. 12, pp. 2327–2361, Dec. 2023, doi: 10.1002/spe.3277.

 109

[7] A. Sabbioni, “Serverless middlewares to integrate
heterogeneous and distributed services in cloud continuum
environments,” 2023, Accessed: Nov. 21, 2023. [Online].
Available: http://amsdottorato.unibo.it/id/eprint/10893

[8] S. Trilles, A. González-Pérez, and J. Huerta, “An IoT
platform based on microservices and serverless paradigms
for smart farming purposes,” Sensors, vol. 20, no. 8, p.
2418, 2020.

[9] J. Spenger, P. Carbone, and P. Haller, “Portals: An
Extension of Dataflow Streaming for Stateful Serverless,”
in Proceedings of the 2022 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Auckland
New Zealand: ACM, Nov. 2022, pp. 153–171. doi:
10.1145/3563835.3567664.

[10] G. Amarasinghe, M. D. de Assuncao, A. Harwood, and S.
Karunasekera, “ECSNeT++: A simulator for distributed
stream processing on edge and cloud environments,”
Future Gener. Comput. Syst., vol. 111, pp. 401–418, 2020.

[11] W. Kassab and K. A. Darabkh, “A–Z survey of Internet of
Things: Architectures, protocols, applications, recent
advances, future directions and recommendations,” J.
Netw. Comput. Appl., vol. 163, p. 102663, 2020.

[12] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-
Enhanced Live Streaming: Improving Live Video Ingest
via Online Learning,” in Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies,
architectures, and protocols for computer communication,
Virtual Event USA: ACM, Jul. 2020, pp. 107–125. doi:
10.1145/3387514.3405856.

[13] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G.
París, and P. García-López, “Stateful Serverless
Computing with CRUCIAL,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 3, pp. 1–38, Jul. 2022, doi:
10.1145/3490386.

[14] Å. Hugo, B. Morin, and K. Svantorp, “Bridging MQTT
and Kafka to support C-ITS: A feasibility study,” in 2020
21st IEEE International Conference on Mobile Data
Management (MDM), IEEE, 2020, pp. 371–376.
Accessed: Nov. 22, 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9162327/

[15] J. A. dela Cruz, N. J. Libatique, and G. Tangonan, “Design
of a disaster information system using mobile cloud
wireless mesh with delay tolerant network,” in 2019 IEEE
Global Humanitarian Technology Conference (GHTC),
IEEE, 2019, pp. 1–8. Accessed: Nov. 22, 2023. [Online].
Available:
https://ieeexplore.ieee.org/abstract/document/9033450/

[16] T. Pfandzelter, S. Henning, T. Schirmer, W. Hasselbring,
and D. Bermbach, “Streaming vs. functions: a cost
perspective on cloud event processing,” in 2022 IEEE
International Conference on Cloud Engineering (IC2E),
IEEE, 2022, pp. 67–78. Accessed: Nov. 21, 2023.
[Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9946366/

