
International Journal of Emerging Engineering and Technology (IJEET)
ISSN (e): 2958-3764
Volume: 2, Number: 2, Pages: 1- 8, Year: 2023

This work is licensed under a Creative Commons AttributionShareAlike4.0 International License, which permits
 Unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited



Inter-Process Communication Amongst Microservices
Maria Shehzadi, Nauman Riaz Chaudhry*, Abobakar Aslam, Reema Choudhary

Department of Computer Science, University of Gujrat, Gujrat, 50700, Pakistan
*Corresponding author: Nauman Riaz Chaudhry (Email: nauman.riaz@uog.edu.pk)

Abstract— The purpose of the study is to perform critical

analysis on Inter-Process Communication (IPC) in the
Microservice Architecture and to evaluate its impact on the basis
of various non-business-related functionalities, such as
effectiveness of performance, accessibility, adaptability, and
complexity. There are various techniques for establishing IPC
within Microservices, each with its own set of benefits and
drawbacks. Throughout this research, IPC approaches are
divided into two categories: synchronous and asynchronous. The
Representational State Transfer Application Programming
Interface (REST API) and google Remote Procedure Call (gRPC)
are utilized in the synchronous kind, whereas Rabbit Message
Queue (RabbitMQ) is utilized in the asynchronous type. A
workload test was conducted across each model to get quantitative
measurements on the Performance Efficiency and Accessibility of
each technique, and a relatively similar functionality set was
utilized to provide qualitative data on almost every other IPC
method's adaptability and complexity. The research outcome
shows if there is any standardized IPC solution that can be utilized
in all scenarios.

Index Terms— Microservices, Communication, Synchronous,
Asynchronous, REST API, gRPC, RabbitMQ.

I. INTRODUCTION

icroservice architecture is a way of breaking down
applications into smaller, independent services that work

separately. Each service performs a specific business function
and can be created, deployed, and scaled independently. This
approach offers several advantages, such as scalability,
flexibility, fault isolation, ease of deployment, improved
development velocity, and easier maintenance. However,
adopting a microservice architecture also creates challenges,
such as increased complexity in deployment and monitoring, as
well as additional overhead in managing Inter-Process
Communication (IPC). To successfully implement this
architecture, careful design, strong development practices, and
appropriate tooling are required to effectively address these
challenges. This study focused specifically on IPC between
Microservices. In monolithic-based systems, services may call
one another at the language level, whereas in Microservices,
every service continues to operate in own module, probably on
a separate system from other services, and this is how IPC
comes into shows an important role in the Microservice-based
framework. The selection of an IPC technique is an important

design choice since it will impact the efficiency and availability
of the application. Numerous IPC approaches exist, each with
its own implications on performance and reliability [1].
However, until today, there are no clear examples or systematic
methods that can help select the proper IPC technique for the
design of applications focused on microservice architecture.
There is confusion regarding when to use which approach and
the downside of each strategy. It is especially difficult to choose
since there is no correct or incorrect choice, perhaps more or
less valid based on technological and business needs. The
objective for choosing this research is to associate IPC methods
in the Microservices architecture from a non-functional point of
view. To accomplish that target, research grounded in
Microservices, using various IPC approaches, will be created.
The strategy will be put through a variety of testing conditions
that allow a comparative evaluation of every technique. When
creating Microservice programs, the result will be actualized
like a guidance for determining the correct IPC approach for the
correct use of the situation.

A. Research Question

The study enquiry extracted from the description of problem,
purpose/goal of intent and objective of the problem is
formulated as:

RQ: How does the selection of the IPC approach influence
the non-business-related requests of a Microservice dependent
application?

To interrogate the study issue and then compare it against the
non-business-related criterion defined in the objective section,
the objective of this work is to respond to the thread that
undertake:
 In regard to system performance point of view, what would

be the implication of employing different approaches for
implementing IPC throughout the implementation of
Microservice architecture?

 So how would the selection of the IPC approach
significantly affect the service’s accessibility?

 What interaction technique provides greater scalability for
the system when the number of queries keeps increasing?

 Where what of the interaction technique is more
complicated and takes a lot of time to be built and
maintained?

M

 2

B. Implications

Since there are additional elements that might impact a
software systems’ performance efficiency, availability,
scalability, and complexity, this study solely analyses the
effects of IPC on the stated quality characteristics. Furthermore,
this research will not include the comparison of the error rates
of IPC techniques.

II. RELATED WORK

This is intended to provide a review of current studies on the
design of Microservices and, more general, the communication
process of Microservices and prior research associated with
data serialization strategies that can be extended to the
implementation of IPCs for Microservice-based applications.

In paper [1] author said Micro services are not a perfect
solution or perfect architectural approach for every software
application like any other design architecture or style. Since
micro services allow each part of the application to have its own
technology pool, this could result toward more aggregate and
complexity if somehow the various teams in an organization
have to coordinate [2]. The author in the book [3] said among
the most necessary and vital choices to make while setting up a
system based on a Microservices architecture is how
Microservices interact among each other. The researchers in
[4] said that when adopting an IPC method for a micro service,
it is important to take into account if the communication among
them is synchronous or asynchronous. The HTTP-based REST
API and gRPC are the two most used forms of synchronous
communication for architects of micro services. A
programming language interface expresses the series of
techniques which a user can access despite maintaining the
execution hidden from them. Service's API is an agreement
between the service and its users in a Microservices
architecture. Every service API includes a list of functions
along with their names, necessary parameters, and return values
[5]. RPC is a method used to allow inter process communication
across many distributed systems. RPC was developed by [6]
and is recognized as a protocol that allows message exchange
of information between two processes while maintaining
minimal overload, simplicity, and transparency. JSON operates
substantially better than alternative text-based messaging
formats, like XML, there are criticisms that it lacks support for
namespaces and input validation [7].

 In [8] the author made a detailed assessment to calculate the
gap in efficiency and rate of error among both architecture. The
writer built two frameworks which is alike from the point of
view of market functionality but different in the architecture of
software. The one system relies on monolithic architecture, and
the other system relies on Microservices. In the second system,
the REST API Synchronous approach was being used for IPC
communication and JSON as a change of data form for every
service. A test case was conducted on those systems by
submitting a large volume within such a fixed timeframe. The

findings of this research revealed that the architecture of
Microservices may have a possibly greater fault tolerance
relative to monolithic architecture, and at the same time
signaling a great ability to enhance interprocess communication
among services to address the duration difference by monolithic
structures.

A transformation to a real-world is carried out in mission-
critical research in the commercial banks by converting a
monolithic related infrastructure into a Microservice related
system and looking at how the Availability and Reliability
improves as a part of the recent architecture. The approach
consists of dividing several large components, some of which
require communication with fourth providers. The study
emphasized that the architecture built on Microservices has
increased the availability of the desired infrastructure as the
current system has been split between multiple parts and
separate from one another, making it easier to load-balance
separate services as required [9].

In [10] the research performed out by expertise at IBM aimed
to build an architecture that is designed for executing the
architecture of Microservice architecture. Researchers designed
2 parts of the model application—one based on monolithic and
another relying on Microservices. Researchers found systems
are more complex efficiency and higher hardware resource
usage in the application's Microservice edition relative to the
monolithic one. The study defines the poor architecture of
process communication in the infrastructure of Microservices
as the obvious change of efficiency, and hence enabled the
opportunity for further study and innovation in this area. The
article did not recommend a concrete approach or
recommendation on how to solve these problems, and instead
pointed out the possible future work for them.

Another research carried out in which the researcher
contrasted the efficiency of the REST API versus the Advanced
Message Queuing Protocol (AMQP), and it’s among the
procedure employed during message related interaction that
comes underneath the Asynchronous section. The study carries
out the tests by establishing two totally distinct software cases
that actively receive messages for a duration of 30 minutes, with
an estimate of 226 requests per second. Every case will execute
the provided user request and preserve it in a permanent
database [11].

The one cases was built on the REST API communication,
and the second was established using AMQP. After performing
tests, the result shows that for situations where it is ok to receive
and process-intensive data, AMQP works much better than
REST API, since it has an improved data loss management
system, improved messaging organization, and reduced
hardware resources.

In another paper the researcher have evaluated the two
Synchronous Communication techniques REST API and
GPRC, both in terms of the message exchange format and data
serialization for Software Defined Networking (SDN)
application-layer communication [12].

 3

TABLE- 1 RELATED WORK

III. METHODOLOGY

In order to promote the achievement of this goal and to be
willing to address the study question, the researcher has
followed "Empirical research method" and the "Design Science
Research Methodology" (DSRM) [14] for the methodology for
this work. Another approach has the ability to create artefacts
for solving a specific problem and simulation is itself [15].

Empirical Research methods are adopted to achieve
objectives mentioned above. Empirical research can be defined
as a theory which is continuously being updated by the
researcher by their practices in real world or by testing their
hypothesis continuously [16]. In empirical research these step
follows:

• Review of literature and hypothesis formation.
• Based on hypothesis, building system using M&S

techniques.
• Validating the hypothesis with the gained knowledge form

literature.
• Case study formulation using M&S for testing of

hypothesis.
• Evaluation of the result gained.
The Design Science Approach it encompasses the one that

follows tasks:
• Problem Recognition and inspiration: at this point, the

researcher covers the following review of related literature and
explains the importance of the resolution [14].

• Determining the objectives of the solution: at this point,
the researcher concludes aim of the solution from the
description of the problem and the current understanding of
what is achievable.

• Development and Implementation: at this point, a
demonstration concept of Microservice framework for an e-
commerce set-up using various IPC approaches has been
planned and implemented.

• Presentation: at this point, how the artifacts provided will
be used to fix the issues.

• Evaluation and Communication: The aim is to emphasize
the problem and its significance, including the use of the
artefact generated to fix the issues and its uniqueness.

Briefly, two approaches are being used in this research work
i.e. design science research and empirical research. This
combination of two approaches used lead to a hybrid approach
for the accomplishment of our objective. Figure 1 shows the
steps involved in the methodology.

Reference Problem Algorithm FutureWork/ Drawback Results

[8]
Slow release cycles, limited
scalability and low
developer productivity.

RESTAPI.
JSON.

Message breakers, such as RabbitMQ.
Microservice has a higher error rate
but a slower response time.

[9]
Availability Reliability
scalability

External API:
TCP messaging
queues in
RabbitMQ.
ForexAPI:
Remote Procedure
Call (RPC).

The implementation of specific
techniques has been used as an argument
in support of increased scalability.

Better scalability, reduced
complexity.

[10]
Design an infrastructure that
is improved for performing
Microservice architecture.

Acme Air, for Web
services, Node.js and
Java Language.

Performance overhead higher hardware
resource consumption Significant
performance degradation.
Network virtualization behind the
performance gap.

No prescribed solution

Performance is 79.2% low on
hardware configuration. On
Node.js, consumed 4.22 times more
time.
On Java a consumed more time in
the application server.

[11]

RESTful web services
versus (AMQP)-based on
communication that falls
under Asynchronous
category.

REST API and
AMQP that
frequently receives
messages for half an
hour time period
with 226 request per
second.

RESTful Web service with RabbitMQ
server

AMQP performs better than REST
API

[13]
Most optimal message and
data serialization format

XML and JSON.
Protocol Buffer, and
Apache Thrift.

Protocol Buffer for new systems.
Use JSON for existing web services.

XML format should be avoided and use
JSON for the development of existing
web services.

 4

Figure 1: Steps involved in research methodology.

A. gRPC Architecture

In Figure 2. gRPC is a modernized RPC-based method
designed and distributed by Google for constructing cross-
language client and server applications. RPC is a method used
to allow inter process communication across many distributed
systems. RPC was developed by [5] and is recognized as a
protocol that allows message exchange of information between
two processes while maintaining minimal overload, simplicity,
and transparency.

Figure 2: The Architecture of gRPC in Microservices

B. REST API Architecture

REST APIs are among the most frequent ways for two
methods to share data, irrespective of their software
architecture. In Figure 3 shows a system that utilises REST API
for IPC communication, every service normally does have its
own web-server operating on a specified port and that each
service offers a collection of endpoints to allow interactions
with other Microservices for data exchange.

Figure 3: The Architecture of RESTA API in Microservice

C. RabbitMQ Architecture

In Figure 4. shows the client submits a message broker
request. Sometime one or more services take the broker's
request and execute it until the outcome is returned to the
broker. Meanwhile, communication among Microservices
controlled by a gateway service called a message broker which
is RabbitMQ.

Figure 4: The Architecture of RabbitMQ in Microservices

IV. USE CASE STUDY

To represent an actual Microservices-based system, in Figure
5. A collection of features for an e-commerce scenario will be
built. These Microservices will be activated in this use case:

1. Service for User role
2. Service for role
3. Service for User privilege
4. Service for Privilege.

Figure 5: Architecture of Usecase

Every Microservice interacts back and forwards based on the
IPC process and the data serialization format used by the system
with the help of gateway. In order to connect to Microservices,
an IPC method or data Serialization type used by the API
Gateway retains contact with the client using Rest API and
JSON formats through HTTP. HTTP and JSON are the by
default protocol and data format used to interact to servers by
browsers and mobile applications, whereas browsers or smart
applications do not supported alternative protocols such as
gRPC.

 5

Figure 7: gRPC Architecture

Figure 8: RabbitMQ Architecture

Figure 6: REST API Architecture

 6

A. Setup of synchronous communication architecture:

 Some of this communication is generally used as a form of
interaction between request and response. Through this method,
one micro service sends a request to some other service and
afterwards waits for that service to process the result and
respond. It is typical in this form for the requester to suspend its
activity while awaiting a response from the distant server.

1) REST API
 This Figure 6. illustrates how IPC method works when

Microservices interact with one another through the use of the
REST API. The API Gateway gets user role ID and user
privilege ID queries from the user's browser. This gateway then
requests individual micro service via the REST API by
supplying the product Id and waiting for each and every answer.
Every Microservice should run a web browser under this
architecture to process HTTP requests, since communication
handled utilizing the REST API through HTTP protocol.

2) gRPC
The API Gateway takes the query from the client's smart

phone application or web browser via HTTP as shown in Figure
7, and afterwards takes that query and calls each Microservices
with the necessary parameters while waiting for their answers.
As gRPC utilizes a binary-based data serialization method, the
outcomes delivered by Microservices via API Gateway are in
bytes. As a result, the API Gateway translates the bytes and
modifies it as JSON format earlier sending them to the client.

B. Setup of Asynchronous communication architecture:

 In Asynchronous communication comparing with
Synchronous mode one of the main distinctions is that the client
will not access the server directly anymore and expects rapid
response from Asynchronous communications. The client
instead submits a message broker request. Sometime one or
more services take the broker's request and execute it until the
outcome is returned to the broker. Meanwhile, the
communication among micro services controlled by a gateway
service called a message broker in the asynchronous form of
communication.

1) RabbitMQ

Throughout the approach as shown in Figure 8, Gateway
sends a query to the broker with the necessary parameters.
Several Microservices would take that query, execute it, and
return the data to the broker. The Gateway will accept the
response since all Microservices answers are published.

V. ANALYSIS AND OUTCOME

The quantitative data serves to generalize the findings about
effectiveness of performance and accessibility, whereas the
qualitative data attempts to clarify the left study objective about
scalability and technique complexity.

A. Quantitative Analysis

1) Effectiveness of Performance
Three test scenarios execute. The entire set of unit testing are

designed to determine the latency and throughput of each IPC
technique. Latency and throughput are critical factors in
evaluating performance efficiency. In each scenario number of
user vary. Tables 2-4 shows three test evaluations.

TABLE- 2 FIRST USECASE

IPC
Technique

Time
Period

Simulated
Users

Mediocre
reaction
time

Total Call/
Answer

gRPC 60s 10 0:00:04s 1001

REST API 60s 10 0:00:07s 987

RabbitMQ 60s 10 0:00:09s 915

TABLE- 3: SECOND USECASE

IPC
Technique

Time
Period

Simulated
Users

Mediocre
reaction
time

Total Call/
Answer

gRPC 60s 20 0:01:03s 1037

REST API 60s 20 0:01:07s 1007

RabbitMQ 60s 20 0:01:07s 1022

TABLE- 4: THIRD USECASE

IPC
Technique

Time
Period

Simulated
Users

Mediocre
reaction
time

Total Call/
Answer

gRPC 60s 40 0:01:17s 1042

REST API 60s 40 0:01:29s 1015

RabbitMQ 60s 40 0:00:59s 1059

The time was set to 60 seconds throughout the three test
evaluations. The first scenario contained 10 virtual users
concurrently, the latter had 20, and the last had 40 computer-
generated users concurrently. The objective of using the test
timeframe as a persistent variable and the number of virtual
users as a controlled parameter is to comprehend how each IPC
technique behaves distinctively because the number of
simultaneous requests and computer traffic to the classification
grows or decreases. Throughput is determined in each test case
by the total amount of requests and answers provided by the
technique during the stated time limit of 60 seconds; the greater
the number of requests, the higher the throughput and the better
it is. Conversely, latency is assessed by the amount of time it
takes to execute every request.

The outcome resulting from the initial working statistics in
figure 9 and figure 10. show that gRPC exceeded REST API
and RabbitMQ during the initial case, producing 14 queries
further than REST API as well as 86 queries far beyond

 7

RabbitMQ; the above demonstrates that Synchronous
communication could indeed grant high speed than
Asynchronous communication if the system's overall load
seems to be significantly small. The total number of simulated
clients inside the second example is twice the amount in the
first. According to the same statistics, gRPC performs best by
executing a more significant number of queries than RabbitMQ
and REST API. Throughout this test, gRPC outperformed
REST API and RabbitMQ by 200 milliseconds in response.
This time, the latencies of REST API and RabbitMQ are
comparable; nonetheless, RabbitMQ processed 15 more queries
than some of its Synchronous competitors. Throughout the third
example, the number of simulated clients rises fourfold over the
first. Throughout this trial, asynchronous communication via
RabbitMQ exceeded both other two methodologies by
processing a net of 1059 queries inside its specified period,
whereas gRPC completed 17 fewer queries than RabbitMQ and
REST API handled 44 fewer queries to RabbitMQ.

The analysis proves a large latency difference between
RabbitMQ and its two Shafts approaches. Within that testing
situation, the REST API's average time to response was 22%
more than RabbitMQ, while gRPC was 13% faster. This
information is critical for determining substantially wide the
performance gap across Synchronous and Asynchronous IPC
protocols could appear when the server seems to be under heavy
stress.
2) Accessibility
 There are many other aspects that might influence a system's
availability; maybe just hardware components can influence a
system's accessibility ratio. All metrics outside of IPC were
omitted for this analysis.

 Accessibility =
்்ி

்்ிା்்ோ

TTF outlooks for "Time to Failure," and TTR outlooks for

"Time to Recovery”. TTF denotes the amount of time the
scheme is projected to be operational afore failing. TTR, on the
other hand, reflects the time it takes for the system to recover
from a failure. A test case was run against all three alternative
IPC techniques headed for see which individual provides the
highest level of accessibility.

TABLE- 5: ACCESSIBILITY DIFFERENCE BETWEEN IPC
METHODS

IPC
Techniqu
e

Simulated
Users

TTF
(second)

TTR
(second)

Accessibility

RabbitMQ 150 300s 7s 0.97
gRpc 150 180s 9s 0.95
REST
API

150 120s 11s 0.91

Once the applications went down, the Kubernetes cluster that

was in charge of maintaining them was manually started up.
Respectively gRPC and REST API were unavailable for
roughly 20 seconds after that, while RabbitMQ was unavailable
for an additional 10 seconds. It is feasible to conclude that an
Asynchronous strategy employing RabbitMQ provides greater
Accessibility than the Synchronous competitors.

Figure 9: Throughput comparison between IPC methods

8

B. Qualitative Analysis

1) Adaptability
Adaptability is frequently associated with how asset use rises
when program wages increase. Thus, it relates to how simple it
is to allow the framework to expand its capability by acquiring
additional assets. According to the findings of a prior tests
performed, it's indeed feasible to conclude that Asynchronous
techniques provide more adaptability beyond the package than
Synchronous transmission methods. The latency increases
throughout Surely enhance utilizing RabbitMQ seems to be
more progressive, whereas gRPC & REST API get more
unpredictable delay as a response of a program's heavy demand
as shown in Figure 9 and 10. When the request volume rises, it
is feasible to conclude that Asynchronous method outperforms
over Synchronous method. Every query inside the
Asynchronous method is routed across a centralized controller
called Message Broker. RabbitMQ message stack may be set
up to function as a swarm with several nodes. Its structure
allows the network to grow in hopes of improving performance
and better satisfying future demands.

2) Complexity

The following parameters were used to measure the complexity
of every IPC approach:

 Lines of Code (LOC), and Function Points (FP).
 Software Testability.

IPC Communication based on REST API does have the

fewest programming lines but to pass along or receive messages
again from middleman, each function should get in touch with
something like the intermediary. Because of this structural
distinction, there seem to be extra factors to consider while
testing and troubleshooting Microservices which employ a
central server, like RabbitMQ.

VI. DISCUSSION AND FUTURE WORK

The impact of the IPC technique on security protocols is among
the domains that have yet to be explored because perhaps the
security of the IPC technique was not a primary concern due to

this
study.

Nonetheless, throughout the investigation, the researcher
discovered some security-related concerns that are important to
highlight. The security precautions provided by each IPC
technique vary primarily owing to the fundamental mechanism
used to transport information. Asynchronous communication
via RabbitMQ may provide a powerful authorization system
with data access that comes out of the bag, but getting a similar
safety mechanism via REST API needs additional
development.
Bringing enhanced security mechanisms to REST API-based
connection might result in a decrease in communication quality,
something that does not occur via gRPC communication, while
gRPC increases the level.

A. Future Work

The outcome of the analysis and development of the whole
research project suggests more possibilities to broaden the
study topic. These hereunder are several prospective avenues
for expanding on this study topic:
 IPC methodology dependability: This theory did not

evaluate the error margin among different IPC techniques,
so it could help calculate the gap among IPC methods in
terms of durability. On the other hand, it might be an
essential component in several cases, making it worth
investigating.

 Creating a more comprehensive heckle: Four
Microservices were engaged throughout this situation and
contacted the API Gateway. Creating an even denser
network with many more Microservices that interact
amongst one another without employing the API Gateway
might give fresh insights.

 Maintainability of the IPC method: Overall diversity was
determined by examining code lines, Feature Points, and
their accessibility for validation. While calculating the
diversity of the IPC mechanism, it is essential to consider
maintainability.

 Assessing various IPC in a testing environment: being
capable of tracking IPC performance inside an actual
operating setup using actual traffic might give new
perspectives for each IPC technique.

Figure 10: Latency comparison between IPC methods.

9

 The impact of coding and Infrastructure on IPC
performance: Considering an essentially similar group of
Microservices constructed using various scripting
languages like Java or Python might give a considerable
understanding of the effect of coding and Infrastructure
upon Microservices efficiency.

VII. CONCLUSION

This study demonstrates that, currently, IPC represents one of
the biggest issues with Microservices design, which might
cause system damage due to various non-functional needs.
Depending on this issue, the accompanying study topic was
established:

How does the choice of IPC method impact the non-
functional requirements of a Microservices-based system?

Substantial experimentation was performed upon every
technique to demonstrate how well the selection of IPC might
impact the system's non-functional needs. The review provides
sound reasons to indicate that Asynchronous communication
does have a benefit versus Synchronous communication since
it provides improved performance efficiency, availability, and
scalability while increasing complexity of the program and
requiring extra technical work. More instructions to assist
readers in choosing between Asynchronous and Synchronous
type in various circumstances are presented. Finally, because
the IPC technique is so important inside a Microservices design,
it must be fully considered. There are many circumstances
when one method of interaction is preferable than another. As
a result, in quite an optimization criterion, both synchronous
and asynchronous types must be used to meet the functional and
non-functional needs of the different aspects.

ACKNOWLEDGMENT

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sector. The
authors declare that they have no known competing financial
interest or personal relationships that could have appeared to
influence the work reported in this paper.

Maria Shehzadi: Problem investigation, Conceptualization,
methodology, Writing – original draft, Writing – review &
editing. Nauman Riaz: Supervision, Methodology, Writing –
review & editing. Muhammad Abubakar Aslam:
Supervision, Writing – review & editing. Reema Choudhary:
writing – review & editing.

REFERENCES

[1] C. Richardson, Microservices patterns: with examples in Java. Simon and
Schuster, 2018.

[2] T. Salah, M. Jamal Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-
Hammadi, “The evolution of distributed systems towards microservices
architecture,” in 2016 11th International Conference for Internet
Technology and Secured Transactions (ICITST), Dec. 2016, pp. 318–325.
doi: 10.1109/ICITST.2016.7856721.

[3] S. Newman, Building microservices. O’Reilly Media, Inc., 2021.
[4] K. Bakshi, “Microservices-based software architecture and approaches,”

in 2017 IEEE Aerospace Conference, Mar. 2017, pp. 1–8. doi:
10.1109/AERO.2017.7943959.

[5] S. G. Du, J. W. Lee, and K. Kim, “Proposal of GRPC as a New
Northbound API for Application Layer Communication Efficiency in

SDN,” in Proceedings of the 12th International Conference on
Ubiquitous Information Management and Communication, in IMCOM
’18. New York, NY, USA: Association for Computing Machinery, Jan.
2018, pp. 1–6. doi: 10.1145/3164541.3164563.

[6] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Trans. Comput. Syst., vol. 2, no. 1, 1984.

[7] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of
JSON and XML Data Interchange Formats: A Case Study,” Caine, vol.
9, pp. 157–162.

[8] G. Johansson, “Investigating differences in response time and error rate
between a monolithic and a microservice based architecture,” Master’s
Thesis, KTH, School of Electrical Engineering and Computer Science
(EECS), 2019.

[9] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and
S. Dustdar, “Microservices: Migration of a Mission Critical System,”
IEEE Trans. Serv. Comput., vol. 14, no. 5, pp. 1464–1477, Sep. 2021,
doi: 10.1109/TSC.2018.2889087.

[10] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for
microservices,” in 2016 IEEE International Symposium on Workload
Characterization (IISWC), Sep. 2016, pp. 1–10. doi:
10.1109/IISWC.2016.7581269.

[11] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah,
“Performance evaluation of RESTful web services and AMQP protocol,”
in 2013 Fifth International Conference on Ubiquitous and Future
Networks (ICUFN), Jul. 2013, pp. 810–815. doi:
10.1109/ICUFN.2013.6614932.

[12] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan.
2015, doi: 10.1109/JPROC.2014.2371999.

[13] A. Sumaray and S. K. Makki, “A comparison of data serialization formats
for optimal efficiency on a mobile platform,” in Proceedings of the 6th
International Conference on Ubiquitous Information Management and
Communication, in ICUIMC ’12. New York, NY, USA: Association for
Computing Machinery, Feb. 2012, pp. 1–6. doi:
10.1145/2184751.2184810.

[14] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
Design Science Research Methodology for Information Systems
Research,” J. Manag. Inf. Syst., vol. 24, no. 3, pp. 45–77, Dec. 2007, doi:
10.2753/MIS0742-1222240302.

[15] M. Bilandzic and J. Venable, “Towards participatory action design
research: adapting action research and design science research methods
for urban informatics,” J. Community Inform., vol. 7, no. 3, 2011.

[16] J. P. Davis, K. M. Eisenhardt, and C. B. Bingham, “Developing Theory
Through Simulation Methods,” Acad. Manage. Rev., vol. 32, no.
2, pp. 480–499, Apr. 2007, doi:
10.5465/amr.2007.24351453.

