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Abstract— The research examines how Artificial Intelligence 

(AI) and machine learning can identify a minor rolling element 

problem (hole and scratch). Keeping track of a machine's health 

makes it possible to spot problems before they become costly, 

unscheduled production process shutdowns. In the study, a 

multi-stage decision mechanism was built using the convolution 

neural network (CNN) model. 
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I. INTRODUCTION 

In most industrial environments, electrical machines (EM) 
are powered by mechanical systems. Continuous monitoring 
(CM) and early discovery of minor issues are essential for 
maintaining EM performance. Keeping track of a machine's 
health makes it possible to spot problems before they become 
costly, unscheduled production process shutdowns. Machine 
current signature analysis, often known as MCSA, has become 
a well-liked approach to condition-based maintenance. The 
MFPT Challenge data includes data collected from machines 
operating under various failure scenarios. Each data set 
consists of four critical frequencies that each reflect a different 
problem location, an acceleration signal ("gs"), a sampling 
rate ("sr"), a shaft speed ("rate"), and a load weight ("load"). 
The system was run at four different speeds for a brand-new 
rolling element with purposely induced local flaws of varied 
sizes [1]. Figure 1 hardware configuration. 

 

Figure 1: Complete working setup. 

II. BALL BEARING FUNDAMENTALS 

A. The Fault of Ball Bearing 

Ball bearing failure is one of the primary causes of rotating 
machine failure. The vibration response to various ball bearing 
issues is measured and studied. The specific faults are a break 
in the outer race, an inner race with a rough surface, and 

corrosion pitting in the balls. Ball bearing failure is one of the 
primary causes of rotating machine failure. So, accurate 
diagnosis and detection of mechanical ball-bearing faults are 
crucial for safe operation. The test rig consists of a high-speed 
rotor supported by rolling bearings. The vibration response to 
various ball bearing issues is measured and studied. The 
specific faults are a break in the outer race, an inner race with 
a rough surface, and corrosion pitting in the balls. Statistical 
techniques are used to extract characteristics and reduce the 
dimensionality of the original vibration information. When a 
bearing malfunctions, it typically results in the failure of a 
machine shaft and the breakdown of the apparatus. A bearing 
fails when it does not function or last as planned. Failure of a 
bearing has significant consequences for your facility [2]. A 
specific type of rolling element bearing called a ball bearing 
uses balls to maintain the distance between the bearing races. 
The primary purposes of a ball bearing are to support radial 
and axial loads and reduce rotational friction. 

When the inner race flaw is close to the device's top, the 
machine strikes the balls more gently. The repeated 
modification of the impact forces is known as amplitude 
modulation, producing the 1x sidebands—inner fault bearing 
of Fig. 2. 

 

Figure 2: Inner race defect. 

B. Outer Race Fault 

The distinguishing features of the spectrum are the outer 
race failure frequency harmonic peaks, shown in Fig.3. 

 

Figure 3: Outer race defect. 

C. Four Fault Frequencies 

Ball pass frequency, outer race (BPFO) is given by 
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III. METHOD TO DIAGNOSE THE BALL BEARING FAULT 

This section presents the results, computer simulations, and 

mathematical elaborations. Starting with an explanation of the 

definitions of a keratogram and a spectrum kurtosis. Based on 

the mathematical modelling, the suggested structure is 

numerically simulated using MATLAB software. The results 

are shown and thoroughly described when the complete 

simulation is presented. A Diagram of a block is shown in Fig. 

4. 

 
Figure 4: Process flow chart. 

A. Envelope Spectrum Analysis 

Abbreviations and acronyms should be defined the first 
time they are used in the text, even if they have already been 
defined in the abstract. Acronyms like IEEE, SI, MKS, CGS, 
sc, dc, and rms do not need to be defined. Avoid using 
acronyms in the title or headings, if at all possible. 

B. Kurtosis Analysis 

A kurtosis graph and spectral Kurtosis are used to 

determine Kurtosis locally within frequency bands. Using 

these resources effectively, the frequency band with the 

highest Kurtosis (or signal-to-noise ratio) may be found 

[3]. After determining the frequency range with the 

highest Kurtosis, a bandpass filter may be added to the raw 

signal to produce a more impulsive signal for envelope 

spectrum analysis. 

C. CNN 

The categorization of the scalograms will subsequently be 
carried out using a fine-tuned SqueezeNet convolutional 
neural network. As a result of being trained on more than a 
million pictures, SqueezeNet has acquired rich feature 
representations. Transfer learning is commonly used in deep 
learning applications. For new tasks, a pretrained network can 
serve as a starting point. Transfer learning often speeds up and 
simplifies network optimization compared to random data 
training. After resetting to zero weights [4], Fewer training 
photographs may allow for quick transmission of acquired 
traits. After loading, view the SqueezeNet network. 

IV. SIMULATION RESULTS 

The completed text alteration prepares the document for 
the template. Now you can generate a copy of the file and then 
name your paper using the convention advised by your 
conference. Then import your text file, highlighting each 
component of the newly created file. Once your document is 

finished, style it using the scroll-down window to the left of 
the MS Word Formatting toolbar. 

As part of our senior project, we created a system that can 

detect and predict a rolling machine's bearing issue called 

Electrical Machines Rolling Element Issue Detection and 

Prediction using Artificial Intelligence. Our building 

system is based on artificial intelligence. 

A. Case I: 

a) Inner Envelop Spectrum 

     using the envelope spectrum analysis technique on the 

data of observed bearing acceleration. 

Visualize the raw time domain data from the MFPT dataset 

for an inner race failure signal. Figure 5 depicts a graph 

between bearing acceleration and time. Figure 6 shows the 

spikes resulting from rolling elements slamming into local 

faults at inner races or from rolling element faults attacking 

inner races. To see the frequency response at BPFI and its 

first few harmonics in greater detail, now increase the low-

frequency region of the raw signal's power spectrum. There 

is no observable pattern at BPFI and its harmonics [4].

 

Figure 5: Enveloped spectrum of inner race fault in the time domain. 

 

Figure 6: Enveloped spectrum of inner race fault in the frequency domain. 

Next, to evaluate the envelope spectrum, look at Fig. 7 for the 

frequency response at BPFI and its harmonics. 
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Figure 7: Signal modulation for a given frequency (time domain). 

b) Inner Kurtosis Analysis: 

Kurtosis is calculated locally within frequency bands using a 

kurtosis graph and spectral Kurtosis. They are effective 

methods for identifying the frequency band with the 

maximum Kurtosis (or the highest signal-to-noise ratio). 

The raw signal can be subjected to a bandpass filter to 

produce a more impulsive signal for envelope spectrum 

analysis and the spectral Kurtosis shown in Fig.9 after 

determining the frequency band with the highest Kurtosis. 

The largest Kurtosis is found in the frequency band with a 

bandwidth of 1.0172 kHz and a central frequency of 13.7329 

kHz, according to the kurtogram [5]. Figure 8. shows an inner 

flaw. 

To compute the spectral Kurtosis, utilize the best window 

length indicated by the kurtogram. 

 

Figure 8: Inner race fault kurtogram. 

 

Figure 9: Spectral kurtosis of the optimal window length. 

Compute the spectrogram and place the spectral Kurtosis on 

the side to see the frequency band on the graph. [6]. To 

understand spectral Kurtosis from a different perspective, 

large values of the spectral Kurtosis signify a significant 

variation in power at the corresponding frequency, making 

spectral Kurtosis a helpful tool for identifying nonstationary 

signal components. 

The modulated amplitude of the inner race fault may be 

recovered, and the Kurtosis can be improved by applying a 

bandpass filter to the signal with the specified centre 

frequency and bandwidth [2]. Figures 10 and 11 demonstrate 

an inner race defect and an envelope, respectively. 

After bandpass filtering, the kurtosis value is shown to have 

risen. The envelope signal will now be shown in the 

frequency domain. 

 

Figure 10: Retrieved inner race fault from the filtered signal. 

 

Figure 11: Inner race fault envelope signal in frequency domain. 
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B. Case II: 

a) Inner Envelop Spectrum: 

Using the envelope spectrum analysis technique on the data 

of observed bearing acceleration. 

See the vibration dataset's raw time domain data for an inner 

race failure signal. Figure 27 depicts a graph between bearing 

acceleration and time when rolling elements clash with local 

faults, as shown in Fig.13 [7]. 

Watch the raw data in the current frequency range. To 

highlight the spectrum to more closely analyze the frequency 

response at BPFI and its first few harmonics [7]. 

At BPFI and its harmonics, no discernible pattern is seen. The 

raw signal's frequency analysis does not yield any relevant 

diagnostic data [7], and Fig. 12 kurtosis illustrates this. 

b) Inner Kurtosis Analysis: 

A kurtosis graph and spectral Kurtosis are used to determine 

Kurtosis locally within frequency bands. Using these tools, 

the frequency band with the highest Kurtosis (signal-to-noise 

ratio) may be found effectively [8]. A frequency band is seen 

in Fig. 15. 

To get a better response for the envelope detection, we used 

the best technique, and the results are in Fig 14. 

The largest Kurtosis, with a value of 704.33, is found in the 

frequency band with a bandwidth of 0.763 kHz and a centre 

frequency of 5.722 kHz, as shown by the Kurtogram. Utilize 

the optimal window length suggested by the Kurtogram to 

calculate the spectral Kurtosis. 

Fig. 12 illustrates the resulting acceleration spikes for the 

rolling collision with the internal races or when the locality 

hits the internal races and clashes with each other. 

 

Figure 12: Kertosis spectrum of inner race fault in the time domain. 

To further evaluate and visualize the analysis of the Kurtosis, 

which may also be interpreted as high spectral kurtosis values 

implying a considerable change in power at the 

corresponding frequency [8], is a useful technique for 

locating nonstationary signal components. 

The signal can be bandpass filtered using the advised centre 

spectrum, improving the Kurtosis and extracting the signal 

amplitude. The kurtosis value is seen to have increased 

following bandpass filtering. Now think about the inner fault 

in Figs. 16 and 17 and the frequency domain envelope signal 

[8]. 

 

 

Figure 13: Inner race fault Kurtogram. 

 

Figure 14: Spectral Kurtosis of the optimal window length. 

 

Figure 15: Visualizing the frequency band on a spectrogram. 

 

C. By passband filtering, the signal with some fluctuations 

having some spectrum given by the Kurtogram and the 

spectral analysis for the envelope may get the results of 

fault signature at the passband filtering integral and its 

other harmonics. This has been suggested and reported 

in [8]. 
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Figure 16: Retrieved inner race fault from the filtered signal. 

 

 

Figure 17: Inner race fault envelope signal in the frequency domain. 

D. CNN Case I Results 

a) Algorithm Training Session 

 

Figure 18: Algorithm training process. 

b) The network's new and transferred layers should be 

trained. Train Network automatically uses a GPU if you 

have Parallel Computing ToolboxTM and supported 

GPU hardware. For information on supported devices, 

see GPU Support by Release (Parallel Computing 

Toolbox). Otherwise, the railway Network uses a CPU. 

The training choices and methodology depicted in fig. 

18's execution environment parameter has the name-

value combination "Execution Environment." 

c) Algorithm Testing 

d) Check the trained network's accuracy using the bearing 

signals in the "Bearing Readings /test data" folder. The 

training and test data need to go through the same 

processing processes. Create an ensemble data storage 

file so you may preserve the bearing vibration signals in 

the test folder. From 1-D signals, generate 2-D 

scalograms. Create an image data store to save the 

sample pictures. Utilize the trained network to categorize 

the stored test picture data. 

e) Accuracy 

 We estimate the convolution neural network algorithm's 

prediction accuracy to be 98.07% after training and 

testing. 

f) Testing Session 

Make a confusing matrix. This demonstrates that deep 

learning may be valuable for recognizing distinct failure 

types in rolling element bearings, even with small data. As 

seen in Fig. 19, utilizing a deep learning strategy reduces the 

time required for feature engineering compared to a 

conventional method. 

 

Figure 19: Prediction results using a confusion matrix. 

E. CNN Case II Results 

a) Algorithm Training Session 

 

Figure 20: Algorithm training process. 

      The network's new and transferred layers should be 

trained. Another technique to characterize the execution 

environment is through the name-value parameter 'Execution 

Environment' of the training options [9]. 

b) Algorithm Testing 

Check the trained network's accuracy using the bearing 

signals in the "Bearing Readings/test data" folder. The 
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training and test data need to go through the same processing 

processes. Create an ensemble data storage file so you may 

preserve the bearing vibration signals in the test folder. From 

1-D signals, generate 2-D scalograms. To store the test 

photos, create an image data store. Use the trained network to 

classify the test picture data storage. 

c) Accuracy 

A convolution neural network was used to train and test the 

algorithm, and we estimated that the prediction accuracy was 

around 91%. 

d) Testing Session 

Make a confusing matrix. This demonstrates that deep 

learning may be valuable for recognizing distinct failure 

types in rolling element bearings, even with small data. As 

seen in fig.21, a deep learning strategy reduces the time 

required for feature engineering and prediction compared to 

a conventional approach. 

 
Figure 21: Prediction results using a confusion matrix. 
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V. CONCLUSION 

      As part of our senior project, we created a system that can 
detect and predict a rolling machine's bearing issue called 
Electrical Machines Rolling Element Issue Detection and 
Prediction using Artificial Intelligence. Our building system 
is based on artificial intelligence. When considering the 
temporal domain, we can see that the inner defect caused a 
distortion (a time-domain graph displays how a signal 
evolves). Because the findings were incorrect in the temporal 
domain, we did not acquire the information we needed for the 
outer defect and the bearing's normal condition. We can see 

that in the frequency domain, the frequency tells how the 
problem happened regarding time. The BPFIO equation 
describes how faults emerge at specific frequencies and during 
predetermined periods. When we apply Kurtosis, we see that 
while several frequencies are present in the kurtosis situation, 
a flaw only manifests on one specific frequency. While some 
frequencies have low values, those with high values can be 
used to detect malfunctions. We employ a CNN for flaw 
detection. In 80% of the situations, we test and train using the 
data we obtain. After that, the remaining 20% of the data is 
trained. Finally, we found that our method could be utilized to 
find both internal and external flaws. 
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