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Abstract- The precise delineation of pests from crop foliage is crucial in intelligent pest identification. This study presents a novel 

cognitive segmentation methodology that aims to enhance the accuracy and reliability of this crucial procedure. The technique 

comprises several essential stages: The proposed method utilizes sophisticated image block processing techniques to partition 

the pest image into smaller, more manageable parts. Additionally, an adaptive learning technique is utilized to carefully choose 

the initial cluster centres, guaranteeing the segmentation procedure's precision. Subsequently, using K-means clustering 

facilitates the acquisition of initial segmentation outcomes, hence augmenting the identification procedure. To mitigate the 

impact of leaf veins, the proposed approach utilizes three digital morphological characteristics closely linked to ellipses. The 

study involved conducting experimental segmentation trials on crop photos that contained whiteflies. The study's findings 

provide compelling evidence that the suggested cognitive segmentation method outperforms existing techniques in accuracy and 

robustness. This technological development provides a robust basis for future pest identification and crop management 

advancements.  

  

Index Terms—Multispectral pest detection, Precision agriculture, Integrated Pest management system.  

  

  

I. INTRODUCTION  

The timely detection and identification of pests in real-time 

are crucial factors in improving pest control strategies, resulting 

in minimized crop damage and reduced pesticide costs. By 

integrating multi-spectral machine vision technology into an 

integrated pest management (IPM) system, a more versatile and 

resilient solution can be provided for the surveillance of a wide 

range of invertebrate pests, including the pink bollworm. 

Furthermore, thermal imaging technology integrated within the 

same machine vision framework can effectively identify 

diverse vertebrate pests, such as wild boars and rats. Traditional 

pest scouting techniques performed by human scouts, such as 

sweep nets, traps, or beat-sheet procedures, can take time and 

effort. Hence, there is a growing demand for using autonomous 

aerial vehicles, specifically quadcopters integrated with multi-

spectral and thermal imaging systems, to conduct real-time pest 

scouting. This technology enables efficient scouting operations 

during the day and night.  

The utilization of unmanned aerial vehicles for autonomous 

scouting has the potential to offer up-to-date data regarding the 

numbers and spatial distribution of pest and vertebrate 

populations. As a result, focused pest management measures 

can be implemented, thereby decreasing the need for wide-

ranging chemical sprays that impact entire agricultural areas. 

This methodology enables targeted actions to effectively 

mitigate the impact of vertebrate pests, resulting in decreased 

agricultural losses and reduced pesticide expenditure. In 

addition, it alleviates the unintentional negative consequences 

inflicted upon beneficial species such as bees and natural 

predators of pests [1]. Previous research endeavours have 

investigated diverse methodologies for identifying and 

monitoring pests. Authors in [2] obtained favourable outcomes 

by using Near Infrared (NIR) images spanning a wavelength 

range of 700 to 1500 nm and soft X-ray images within the range 

of 0.1 nm to 10 nm to detect invertebrates. The identification of 

weighting elements as crucial was noted, with the observation 

that using extreme weight values can lead to errors.   

The early pest identification algorithm utilizing a cognitive 

vision technique was proposed by researchers in [3]. 

Nonetheless, the researchers' efforts were limited by the 

utilization of sensors that solely captured static images—in 

their study in [4] examined the capabilities of a ground-based 
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hyperspectral imaging system. However, their research was 

restricted to small, acquired images, which restricts its 

practicality for monitoring vegetation on a broad scale. Their 

stud in [5] utilized an RGB imaging system to diagnose plant 

diseases. However, the outcomes of disease detection using this 

method were frequently found to be less than desirable. The 

efficacy of this method could be augmented by incorporating 

multispectral imaging techniques. The machine vision 

technique for scouting whiteflies in greenhouse conditions was 

introduced by [6]. Although their method demonstrated 

efficiency, additional improvements could be achieved by 

incorporating various types of pests and conducting studies in 

both laboratory and field environments. This article presents a 

novel approach for pest detection using machine vision and 

multispectral imaging, which does not require supervised 

network training. The utilization of multispectral images in this 

study is justified by their enhanced adaptability to dynamic 

environmental conditions, such as fluctuations in sunshine and 

partial occlusions, in contrast to RGB photographs. 

Significantly, our methodology focuses on assessing green 

foliage's ultraviolet (UV) spectrum ranging from 100 nm to 400 

nm. This investigation aims to identify and detect nine 

invertebrate species, which represent a previously untapped 

area in the field of pest detection study.  

  

II. LITERATURE REVIEW  

Within agriculture, picture segmentation assumes a crucial 

function by acting as a virtual tool that effectively delineates 

the plant from its immediate environment or discerns the fruit 

from the remainder of the plant and its background. This 

activity is essential for facilitating automated agricultural 

procedures, including harvesting, yield estimation, and disease 

detection [7]. Image processing technologies provide us with 

the ability to detect items accurately, quickly, and delicately, 

resembling the act of harvesting ripe fruit without causing harm 

to the plant. However, the journey towards attaining precise 

plant and fruit detection by image processing is not devoid of 

obstacles. Consider a hypothetical situation in which the 

illumination conditions cause the object's visual perception to 

be altered, resembling the phenomenon of a chameleon 

assuming a new coloration. In the presence of unpredictable 

lighting conditions, segmentation algorithms that rely on color-

based approaches encounter significant challenges as they 

attempt to interpret the constantly changing hues [8, 9]. The 

situation becomes increasingly perplexing when the subject 

exhibits a coloration that closely resembles its environment. 

For example, let us contemplate the challenge of identifying a 

lush fruit, such as an apple or grape, concealed among a foliage 

of leaves and branches, all adorned in a uniform verdant hue. 

In situations characterised by their mysterious nature, the 

traditional method that relies on colour as the primary 

determinant encounters difficulties, hence creating a desire for 

more effective outcomes [10]. In order to overcome these 

obstacles, experts in the field have put forth approaches that 

utilise a wide range of characteristics, such as texture and 

shape, by closely examining groups of pixels and their complex 

interconnections [11]. However, numerous innovative 

strategies heavily rely on the utilization of thresholds to 

measure attributes such as colour, shape, or size. This technique 

might be likened to a game with ever-changing rules for each 

new image, resulting in outcomes that are as unpredictable as 

the weather. The essential aspect of this issue pertains to 

recognizing that the total effectiveness of fruit and plant 

detection heavily relies on the proficiency of our segmentation 

efforts [12-14]. Therefore, we must develop a resilient 

segmentation algorithm that remains steadfast, irrespective of 

the colour variations of the fruit or the background scenery. In 

an era characterized by dynamic and evolving issues, it is 

crucial to thoroughly examine contemporary research efforts 

about the detection of plants and fruits. Within the subsequent 

pages, we present an extensive collection of modern 

methodologies sourced from the archives of academia [15, 16]. 

This compilation represents a rich tapestry woven through 

innovative approaches and persistent efforts.  

III. METHOLOGY  

A. Acquisition of Images  

The whitefly, a small but highly destructive insect notorious for 

its ability to drain the vitality of various plant species, poses a 

significant challenge in agriculture. The record of life's tale is 

painstakingly documented by Barbedo (2014) throughout six 

distinct stages. The whiteflies attain maturity during the final 

phase of this entomological narrative, exhibiting a small 

physical dimension of roughly 1mm. The mature adult whitefly 

(Trialeurodes vaporariorum Westwood) is easily identifiable 

due to its yellowish abdomens and spotless white wings, as 

illustrated in Fig. 1. This characteristic appearance makes it a 

prominent subject of our investigation.  

  
FIGURE 1.   Enhanced Images of adult whiteflies 

Our pursuit of an extensive collection of whitefly visual records 

brought us to the expansive Xiaotangshan National Precision 

Agriculture Research Demonstration Base, situated in the 

scenic surroundings of Beijing, China. Equipped with a diverse 

array of digital cameras and the versatile optical capabilities of 

mobile phones, we began on a photographic expedition aimed 

at capturing the fundamental nature of these enigmatic insects. 

By carefully adjusting the position of our lenses at a 

captivatingly close distance, ranging from 20 to 60 centimetres 

from the lush foliage, we took great care to guarantee that our 

photographs were caught with precise perpendicular alignment. 

The visual representation of our study into the complex realm 

of whiteflies is revealed in the comprehensive collection of 

images showcased in Fig. 2.  
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FIGURE 2.   Whiteflies on pepper leaves.  

B. Data Pre-processing  

The inclusion of image preparation was integral to our 

methodology, encompassing two essential processes. The 

bilinear interpolation method was initially utilized to scale and 

crop photos to facilitate segmentation. photos with dimensions 

below 100 pixels were afterwards set to zero. Following this, 

the crop photos were partitioned into blocks, with the size of 

each block being chosen based on previous knowledge and 

expertise. Figure 3 depicts the outcomes of the pre-processing 

stage, which is a vital preliminary step in our expedition of 

picture analysis.  

  

FIGURE 3.   Example of the outcome of pre-processing an image. (a) 

A 400x300px image that has already been processed. 100x100 pixel block size 

(b).  

The investigation of whiteflies involves an exploration of its 

mysterious nature. Figure 1 clearly represents their unique 

attributes, which serve as a valuable tool in our efforts to 

differentiate these small insects within the visually dynamic 

context of agricultural imagery. Upon traversing the vast range 

of colours inside the RGB (Red, Green, Blue), we have 

observed a significant and noticeable abundance of green tones. 

Equipped with this valuable understanding, we began a 

rigorous mathematical exploration, harnessing the 

computational capabilities of Euclidean distance. The distance 

in question functioned as a navigational tool, guiding us as we 

traversed the complex RGB vectors of each pixel. In this 

manner, we assumed the role of a digital mapper, meticulously 

mapping out the expansive realm of colours.  

 (Gvalue -Bvalue > q1 ) Ç (Gvalue -Rvalue > q2
）

 Eq (1)  

where Rvalue and Bvalue are two adjustable constants. Green 

to red is described by the a* component of the CIE L*a*b* 

colour space. Images with high a* values are likelier to be pests, 

whereas those with low a* values are more likely to be crop 

leaves. The K-means clustering algorithm holds a prominent 

position in the captivating field of data analysis. It is widely 

regarded as a distinguished method in unsupervised 

classification approaches, as evidenced by the comprehensive 

research conducted by Yao et al. in 2013. The algorithm under 

consideration exhibits expertise in data segmentation, 

effectively organizing data into distinct clusters called 'K' 

through a systematic and precise process. What is its primary 

directive? To minimize the illusive error function, one must 

engage in a quest that embodies the principles of precision-

driven analytics. The algorithm in question is widely 

recognized and appreciated for its extensive range of 

applications and utility.  

Nevertheless, more than conformity to established customs 

would be required in our diligent pursuit of accuracy. We 

embarked upon a transformative endeavour to achieve 

proficiency in reliably distinguishing whiteflies within the 

complex framework of crop leaf photos. The trajectory we 

pursued involved adopting a refined version of the K-means 

clustering technique developed and documented by Wang et al. 

in 2018. The implementation of the improved approach, 

denoted as approach 1, was a significant milestone in our 

pursuit of achieving precise rendering at the pixel level.  

Pseudocode for Enhanced K-means Clustering 

Algorithm Algorithm 1: Enhanced K-means Clustering 

Algorithm Input:  

The desired number of output clusters, K; 

Pixels of whitefly image, xi.  

Output:  

Assigned cluster number for each input pattern.  

Step 1: Initialize cluster centers, µ1, µ2, …, µk, adaptively 

learned based on xi. Step 2: For each xi:  

Calculate the Euclidean distance between xi and µi.  

Classify xi based on the nearest µi.  

Step 3: Recompute µi based on the mean of the K-clusters. 

Step 4: Calculate the Manhattan distance (L) between each 

cluster, considering the mean of a* component for each cluster. 

Step 5: Repeat steps 2–4 until the maximum Manhattan 

distance (L) is achieved.  

Within the complex domain of picture segmentation for insect 

pests, the crucial task of choosing the initial cluster centres 

arises as a fundamental factor in determining accuracy and 

achievement. Relying solely on rigid and inflexible 

classification centres can quickly undermine the algorithm's 

ability to adapt, making it unsuitable for image segmentation. 

We pursued novel ideas to overcome this challenging situation, 

avoiding the potential introduction of randomness associated 

with K-means clustering. In our endeavour to achieve 

uniqueness, we endeavoured to find a resolution that surpassed 

the ordinary. Hence, our expedition culminated with the 

creating of a self-learning algorithm, an innovative 

achievement that skillfully and strategically establishes cluster 

centres. Algorithm 2 manifests this ambitious endeavour as 

evidence of our unwavering commitment to achieving accuracy 

in the elusive domain of insect pest picture segmentation.  

Algorithm 2: Adaptive Estimation of Cluster Centres 

Input:  

Desired number of output 

clusters, K; Pixels of whitefly 
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image, xi; Fixed thresholds, ε1, 

ε2.  

Output:  

Initial cluster centers, µk.  

Step 1: Transform the image to the CIE Lab* color space. Step 

2: Descendently sort the a* component, resulting in the sorted 

sequence P.  

Step 3: Select pixels corresponding to the maximum and 

minimum N values based on P.  

Count the number (N1) of pixels with the minimum a* 

component, satisfying Eq. (1).  

Compute the mean of R, G, and B values of these pixels as R1, 

G1, and B1, respectively.  

Step 4: Count the number (N2) of pixels with the maximum a* 

component not satisfying Eq. (1).  

Calculate the mean of R, G, and B values of these pixels as R2, 

G2, and B2, respectively.  

Step 5: If N1 exceeds ε1, select R1, G1, and B1 as the initial 

cluster center µ1 for a healthy leaf.  

Step 6: If N2 exceeds ε2, designate R2, G2, and B2 as the initial 

cluster center µ2 for a whitefly-infested leaf.  

 We have proposed a novel adaptive method in our ongoing 

search for flexibility and accuracy in choosing a central node 

for a cluster at the outset. With this ground-breaking method, 

we can extract the locations of these vital cluster centres from 

the complex mosaic of crop images themselves. But we weren't 

satisfied with that; we aimed to improve our flexibility and 

accuracy to unprecedented levels. Enter image block 

processing, a method for breaking down large amounts of 

information into more manageable chunks. Think of a raw, 

unprocessed photograph as a 400x300-pixel canvas, the 

equivalent of a huge, uncharted region. As seen in Figure 3, we 

cut this canvas into 12 separate blocks of 100 by 100 pixels 

each. Our adaptive method, method 2, uses the RGB values as 

three-dimensional input feature vectors and sets to work inside 

the constraints of each block. This means that the first clustering 

centres emerge independently in each block, much like the first 

sparks of an artist's inspiration. These regional hubs, which 

function like puzzle parts, are precisely determined. However, 

our concern for accuracy continues beyond the perimeter of the 

block. We can make out the whole picture instead of seeing only 

bits and pieces. The concordant union of each block's cluster 

centre means bringing the original cluster centres for the 

complete image to life.  

C. Elimination of leaf Vein  

Veins are complicated vascular highways that carry nutrients 

and water across the leaf's lush topography. However, our 

system may mistake these important structures for whiteflies in 

its search for precision in leaf image segmentation because of 

the deceptive shade they cast. To cope with this difficulty, we 

resort to the sophisticated field of digital morphological 

features, particularly the characteristics of an ellipse. Just 

picture a leaf as a blank canvas on which an algorithm could 

misinterpret the beauty of nature. Mathematical wizardry is 

used to crack the code. The ellipse's major and minor axes, as 

well as its charming quirkiness, serve as our three main points 

of reference. Envision the ellipse embedded entirely within the 

bounds of the confined space, accurately reflecting its very 

nature. The major and minor axis lengths are calculated from 

this embrace, allowing us to evaluate the overall size of this 

elliptical work of art. A mystical ratio between the ellipse's foci 

and its major axis length emerges as the answer: eccentricity. 

Its values are confined to the holy range from 0 to 1, much as 

the full gamut of human expression. The complete circle, a 

symbol of oneness, is bestowed upon us by an eccentricity of 

0, whereas the exquisite line segment, simplicity itself, is 

presented to us by an eccentricity of 1. We set out on a quest to 

determine the true nature of interconnected things, armed with 

the knowledge that only the eccentric can provide. Those 

whose eccentricity is larger than 0.98 or whose ratio () is less 

than 0.2 are suspected of being impostors.  

  
FIGURE 4.   The ability to locate veins (a). Figure 2(a) shows the leaf 

veins as green lines. where 2(b) is the concluding segment.  

IV. RESULTS  

The segmentation experiments were conducted with great 

attention to detail using the MATLAB 2019 computational 

environment. The experiments were performed on a computer 

equipped with an Intel® Core™ i5-3210 processor running at a 

clock speed of 2.5 GHz. The computer had 10 GB of Random 

Access Memory (RAM) and ran on the Windows 7 operating 

system. The experimenting canvas displayed a variety of 

whitefly images positioned on the backdrop of three varied crop 

leaves, specifically corn, tomato and pepper. The photos 

functioned as a litmus test, evaluating the effectiveness of the 

proposed segmentation process. The collected photos depicted 

a visually engaging tapestry, which unveiled the presence of 

whiteflies and showcased the exquisite array of whitefly eggs 

at different stages of development. The presence of this mosaic 

fundamentally increased the level of complexity associated 

with the segmentation task. By utilising the adaptive learning 

approach to determine the initial cluster centres, our efforts 

produced satisfactory outcomes, as demonstrated by the 

comparison of Figure 5(a, c, e, g, i, k) with Figure 5(b, d, f, h, 

j, l). However, it is necessary to recognise the existence of 

specific areas of misalignment within the segmented outputs. 

The primary obstacle arises when whiteflies or their eggs reside 

within the leaf veins, so eluding accurate detection and 

separation. The Figure 6 shown vividly illustrates the nuanced 

intricacy, so shedding light on the limitations of our algorithm's 

effectiveness. 
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In order to evaluate the precision of the segmentation 

algorithms, we conducted a thorough assessment by carefully 

comparing manually segmented images with their 

autonomously segmented counterparts. This evaluation 

approach is in line with the methodology proposed by Sezgin 

and Sankur in 2004. The set of automatic segmentation 

strategies examined in this study included a fixed threshold 

method, the well-established Otsu method, the long-standing 

K-means clustering strategy as described by Wang et al. in their 

2018 formulation, and our own original method. The data 

presented in Table 1 provide evidence supporting the 

superiority of our strategy compared to the three alternative 

ways. The project we developed demonstrated a significantly 

lower average misclassification rate when applied to various 

crop conditions. The calculated mean error rate, measured at 

0.0364, exhibited a notable advantage, demonstrating a 20.6% 

superiority compared to the fixed threshold approach, a 15.88% 

advantage over the Otsu method, and a remarkable 16.8% lead 

over the conventional K-means cluster method

  

  FIGURE 5.   Whitefly imagery segmentation on a variety of crop leaves. (a, i) Authentic whitefly photos, taken on maize and tomato leaves, 

respectively. Whitefly on pepper leaves, original photographs (c, e, g, k). the letters (b, d, f, h, j, and l) The completed segmentation.  

  

The proposed technique demonstrated superiority and 

improved stability, as indicated by its smaller standard 

deviation. The aforementioned results clearly demonstrate our 

approach's remarkable adaptability in insect pest picture 

segmentation.  

TABLE I  

COMPARISON OF SEGMENTATION TECHNIQUES' FALSE POSITIVE AND FALSE 

NEGATIVE RATES.  

Crop  

Species  

Otsu  Fixed  

Threshold  

K-Mean Cluster  Developed 

Method  Minimum  Mean  

Corn  0.034  0.069  0.032  0.032  0.019  

Tomato  0.156  0.128  0.1005  0.149  0.083  

Pepper  0.095  0.029  0.2305  0.269  0.019  
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Pepper  0.0832  0.561  0.045  0.344  0.033  

Pepper  0.473  0.445  0.459  0.459  0.046  

Pepper  0.34  0.224  0.4141  0.379  0.019  

FIGURE 6.  Original Image and Segmented Image  

V. CONCLUSION  

The current work presents a newly developed cognitive 

segmentation method designed exclusively for photos of pests. 

This methodology combines three fundamental tactics, each 

playing a crucial role in improving the accuracy and stability of 

segmentation. The trinity of techniques comprises three key 

components: picture block processing, incorporating adaptive 

initial cluster centres via self-learning, and a discerning 

mechanism for removing leaf veins. The segmentation 

experiment utilized photos depicting whiteflies infesting three 

types of crop leaves. The empirical evidence strongly supports 

the efficacy of our recently proposed approach in accurately 

distinguishing whiteflies from the complex background of crop 

leaf photos. Compared to previous segmentation algorithms that 

were tested, our suggested methodology demonstrated superior 

performance, clearly showing its effectiveness in accurately and 

robustly segmenting pest images.  
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