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ABSTRACT: Performance characterization of algorithms has been commonly performed using 

parametric methods such as Precision-Recall, Repeatability, and detection rate etc. These methods 

assume that the data to be normally distributed, and therefore, the results became data specific.  The 

main objective of this analytical study was to employ non-parametric statistical tests, for this purpose 

two tests Wilcoxon Signed Rank test and McNemar’s test were applied to characterize the performance 

of corner detection algorithms. The results showed that the use of sufficiently large amount of data and 

correct testing framework using different non-parametric statistical tests yielded similar results, which 

was not observed with conventional parametric tests. Both Wilcoxon Signed Rank test and McNemar’s 

test produced a similar ranking of corner detection algorithms, as both tests suggested Harris and 

Stephens at the top position then SUSAN, FAST, GLC and finally KLT. Hence, these non-parametric 

test were recommended to be used for the evaluation of vision algorithm due to their simplicity and 

reliability.   
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INTRODUCTION 

 Considering the domains of machine learning, 

computer vision and image processing, the most common 

performance evaluation methods are Receiver Operating 

Characteristic (ROC) curves (Simonyan et al., 2014), 

Precision-Recall curves (Miksik and Mikolajczyk, 2012), 

accuracy plots, repeatability graphs (Heinly et al., 2012) 

and some statistical methods such as Analysis of 

Variance (ANOVA),  t-tests etc. (Winer et al., 1971). 

There are two main problems using these measures. First, 

although these performance measures are able to 

highlight an algorithm’s success or failure, but one at a 

time, depending on the evaluation criterion used. Perhaps 

this is the reason that a variety of algorithms’ ranking is 

found in the literature. Furthermore, graphs cannot be 

interpreted properly as in case of cross curve and 

overlapping curves so the reliability and statistical 

significance becomes questionable (Lobo et al., 2008). 

 Secondly, the measures themselves are not 

flawless. A systematic analysis of a number of 

performance measures was performed by (Sokolova  et 

al., 2009).  As per their analysis most of these 

performance measures are sensitive to the amount of data 

divided into positive and negative examples. Therefore, 

the results should be interpreted differently with change 

in data. Hence, testing method as well as framework of 

collecting algorithms’ results should be as much non-

specific as possible.  

 Statistical tests are categorized as parametric and 

non-parametric methods; distinction between two comes 

from the data, where former methods commonly assumes 

that the data to be normally distributed (Winer et al., 

1971) while the latter one ignores the data characteristics. 

Moreover, it is difficult to apply parametric tests to real 

data because data is generally non-normally distributed 

and need transformation. On the other hand non-

parametric methods do not make any pre-assumption and 

more convenient to be used. In particular, they may be 

applied in situations where data characteristics are less 

known.  

 Although both parametric and non-parametric 

tests are used for multiple comparisons, however, the 

comparison of an algorithm with at least one existing 

state-of-the-art algorithm is typically performed known as 

paired or 1 x 1 comparison (Durkalski  et al., 2003). 

There are a number of statistical tests available for pair-

wise comparisons such as t-test, Pearson test, Wilcoxon 

sign test and McNemar’s test etc. The first two are 

parametric while the last two are non-parametric form of 

tests (Gibbons  and Chakraborti, 2011). Therefore, this 

study employed McNemar and Wilcoxon tests for the 

performance assessment of corner detection algorithms. 

McNemar’s test has been widely used in medical research 

(Durkalski  et al., 2003, Gonen et al., 2001, Saag et al., 

1992,  Uemura et al., 2001 and Wellner et al., 2004 ); 

however, it has not been commonly examined for 

characterizing vision algorithms. 
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MATERIALS AND METHODS 

 A problem of corners detection in digital images 

had been chosen for comparing corner detection 

algorithms and McNemar’s and Wilcoxon Signed Rank 

test for paired data analysis. Furthermore, to investigate 

the effect of the amount of data over evaluation results, 

the two selected tests were more suitable, because the 

Wilcoxon test could differentiate performance differences 

using a small amount of data while McNemar’s test 

needed large sample size as shown in Figure-1.  

 
Figure 1. Non-parametric tests for paired data 

analysis 

Image Data: In order to use sufficiently large amount of 

data both synthetic and real image data had been used for 

the evaluation of corner detectors that was originally 

developed to assess the angular sensitivity of corner 

detectors (Kanwal et al.; 2011a and Kanwal et al., 

2011b). But here the focus of analysis was not to identify 

a detector which could find corner points at all angles 

rather an identification of algorithm which could classify 

all image pixels appropriately. Collecting large amount of 

data was the primary consideration to obtain statistically 

reliable results. Therefore, geometric shapes were used, 

the purpose of using geometric shapes was that these 

shapes were simple and fundamental for the 

representation of shapes/objects in digital images as is 

shown in Figure-2. Also geometric information such as 

angle remained same while changing the orientation of 

a geometric object. 

 A large number of synthetic images of 

geometric shapes were digitally produced on computer. 

Polygons and stars like geometric shapes were generated 

on a computer and printed to generate real image data. 

Some of these images shown in Figure-2 are 

photographed using a Nikon D300 camera. 

 

 
Figure 2. Different polygons used to generate 

synthetic and real image data. 

 

 To find out exact corner locations in 

photographed images, a two step procedure was 

followed. First 10 humans were asked to point out the 

pixel locations of corner points in photographed images. 

These locations were then refined by OpenCv’s function 

to find sub pixel accuracy. A total of 45 real and 45 

synthetic images were used for this purpose. 

 For evaluation purpose, instead of finding only 

corner pixel locations, all pixels in an image were defined 

to be either corner or non-corner and stored as validation 

image as is shown in Figure-3. 

 
Figure 3: An image of a polygon with marked corner 

and its neighbourhing pixels with white and 

gray pixels respectively 

 

 The actual corner locations were stored as a 

white pixel value of 255, while black pixels valued 0, 

were non-corner pixels and gray color pixels valued 200 

were the neighborhood pixels. This kind of validation 

images were generated for all synthetic and real images. 

In order to access individual detector’s performances, the 

detectors’ outcome was compared using these synthetic 

and real validation images. 

 To explore the effectiveness of two non-

parametric statistical tests, a combination of classical and 

newly proposed corner detection algorithms were used 

which included Harris and Stephens (Harris and 

Stephens, 1988) and  Kanade-Lucas-Tomasi (KLT)  

(Tomasi and Kanade, 1991) Smallest Univalue Segment 

Assimilating Nucleus (SUSAN) (Smith and Brady, 1997) 

whereas, features from Accelerated Segment Test 

(FAST) (Rosten et al., 2010) and Global and Local 

Curvature Points (GLC) were two newly proposed corner 

detectors (He and Yung, 2008).  

Testing Framework: Statistical analysis started by 

setting a null hypothesis denoted by Ho, A null hypothesis 

is a statement that describes the relationship between 

dependent and independent variable e.g. “the algorithms 

under study behaved similar to some selected data”. This 

hypothesis was then tested using different statistical tests 
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and either accepted or rejected. For all statistical tests the 

results were interpreted using a level of significance 

called alpha (α). It was used to set a threshold or a cut off 

value for significant and non-significant results. For 

instance test statistics were translated as follows: 

 If a Z-score was less than Z-critical, the result 

was considered non-significant and the null hypothesis 

was accepted. However, if the Z-score was greater than 

or equal to Z-critical then the result was considered 

statistically significant and the stated null hypothesis was 

rejected for a given alpha; for which commonly used 

value was 0.05 i.e. 95% confidence limit. 

 

Table 1. Truth table for McNemar’s test 

 
 Algo. A Failed Algo. A Passed 

Algo. B Failed ff Ft 

Algo. B Passed tf Tt 

f=false, t=true 

Mcnemar’s Test: The test was used to record the 

outcomes of two algorithms over multiple tests and 

therefore not only it counted the number of times an 

algorithm was successful or unsuccessful in a test but 

also the total number of tests performed.  

 For example, in comparing two algorithms, i.e. 

Algorithm A to Algorithm B, a null hypothesis was based 

on the presumption that there was no difference between 

their performances. To count pass and fail cases for truth 

table (Table 1), following method was adopted: if a 

corner detector detects a corner pixel in an original 

image, it was matched against three values in the 

validation image. If the detected location has value 0 in 

validation image, the detector failed and validation image 

passed. However, if the detected location had value 255 

or 200, both detector and validation image passed. For 

the rest of the pixels, both detector and validation images 

were considered a pass as the detector did not detect these 

background pixels as the corner pixels. The Z score was 

calculated using following formula 

  √    
 |     |    

√     
 

and interpreted as: Z ≈0 showed that both Algorithms 

gave similar results. However, when Z increase the 

expression may involved cases where the output of one 

algorithm was true and the other was false. 

Wilcoxon Signed Ranked Test: Similar to McNemar’s 

test the Wilcoxon Signed Ranked test was also used for 

the comparison of two related samples. This test was used 

to test a Null Hypothesis stated as below 

Ho: the median of the sample was zero 

H1: the median response of the sample was less than the 

median 

 Following were the steps to apply wilcoxon 

signed ranked test 

1. Let n be the sample size for N number of pairs. 

For i = 1,…, N, let x1i and x2i represents the 

measurements or observations. 

2. For i = 1,..., n, calculated difference between 

observations for each data set, i.e.  |x2i-x1i| and 

sgn(x2i-x1i), where sgn represented sign function. 

3. Eliminate pairs with |x2i-x1i| = 0. Let nr be the 

decreased sample size. 

4. Let W+ represents Sum of the ranks of positive 

differences, and W- represents sum of the ranks 

of negative differences. Check that W+ +W- = 

1/2*k(k+1), where k was the number in the 

sample having ignored the zeros. 

5. For two tailed test pick the smallest of W+ and 

W-. 

6. For one tailed test W- was the test statistics. 

7. Calculate Z using formula  
                   

√                     
 

for nr > 15. 

8. Z greater than Z critical (taken from Z-table for 

given α) showed a significant performance 

difference between Pair of algorithms and 

corresponding W score pointed out the one 

performing better than the other. 

RESULTS AND DISCUSSION 

 The classification of image pixels by the 

detectors was counted, which yielded binary results. Both 

McNemar’s and Wilcoxon test used this count of binary 

outcomes. In both tests two algorithms were compared at 

a time, i.e. 1 x 1 comparisons, therefore, there was only 

one degree of freedom. Hence, from standard Z-tables the 

critical Z-score was 1.96 for α = 0.05. 

 First row of each detector correspond to Z value 

and second row always indicate corresponding P value. 

The Z score greater than 1.96 and P less than σ, for σ = 

0.05 highlighted significant performance difference 

between two algorithms. 

Mcnemar’s Test Results: For convenience and quick 

overview, detectors’ results for both synthetic and real 

images are shown in Table 2 and the arrowheads pointing 

towards the detector performing better in pair-wise 

comparison (at the intersection of row and column). 

Counting the arrowheads pointing in the same direction 

helped identifying Harris and Stephens to be the best 

algorithm followed by SUSAN similar to (Mokhtarian 

and Mohanna, 2006).  FAST appeared to be next in the 

ranking order while KLT showed the worst performance 

as compared to all other detectors. 

Wilcoxon Test Results: Similar to McNemar’s test, 

Wilcoxon signed rank test was also used to compare 

algorithms in pairs. Furthermore, one tailed prediction 

was used to not only identify the performance difference, 

but also the one with better performance. Therefore, W- 
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was the statistics that was used and the directions of 

arrowheads indicated better performance as is shown in 

Table-3.  For all comparisons, Wilcoxon test appeared to 

be in complete agreement with McNemar’s test, (Harris 

and Stephens, 1988) being the best of all algorithms. 

Moreover, both Wilcoxon and McNemar’s test pointed 

out the better performing algorithm in pair-wise 

comparisons (Gibbons  and Chakraborti, 2011). 

Table 2. McNemar’s Test results for synthetic and real images.  

 

 
Susan Fast GLC KLT 

 

Synthetic Real Synthetic Real Synthetic Real Synthetic Real 

Harris 

←7.038 1.510 ←18.74 0.74 ←2.645 ←17.11 ←15.86 ←203.72 

1.96E-12 1.31E-01 0.00 0.46 8.17E-03 0.00 0.00 0.00 

Susan 

  

←17.52 ←2.215 ←2.608 ←18.673 ←16.450 ←2.04E+02 

  

  

0.00 2.67E-02 9.11E-03 0.00 0.00 0.00 

Fast  

    

↑8.043 ↑19.805 ←7.214 ←203.72 

  

    

8.88E-16 0.00E+00 5.46E-13 0.00 

GLC 

      

←13.82 ←196.12 

       

0.00 0.00 

 

Table 3. Wilcoxon Test Results for synthetic and real image data.  

 

 Susan Fast 12 GLC KLT 

  
Synthetic Real Synthetic Real Synthetic  Real Synthetic Real 

Harris z= ←3.703 0.562 ←4.95 0.021 ←3.709 ←5.750 ←4.546 ←5.838 

 

p= 2.13E-04 5.74E-01 7.50E-07 9.84E-01 2.08E-04 8.93E-09 5.47E-06 5.28E-09 

 

w+ 716.50 467.50 847.50 497.00 717.00 988.00 920.50 1035.00 

 

w- 144.50 567.50 55.50 493.00 144.00 2.00 114.50 0.00 

Susan 

  
z= ←5.138 ←2.73 ←3.936 ←5.750 ←4.892 ←5.838 

  

  
p= 2.79E-07 6.25E-03 8.29E-05 8.93E-09 9.96E-07 5.28E-09 

   
w+ 935.50 533.00 734.50 988.00 914.50 1035.00 

   
w- 54.50 170.00 126.50 2.00 75.50 0.00 

Fast 12 

    
z= ↑4.201 ↑5.84 ←2.189 ←5.838 

  

    
p= 2.65E-05 5.28E-09 2.86E-02 5.29E-09 

     
w+ 106.00 1035.00 291.50 0.00 

     
w- 755.00 0.00 654.50 1035.00 

GLC 

      
z= ←4.350 ←5.838 

 

      
p= 1.36E-05 5.29E-09 

      
w+ 94.50 0.00 

      
w- 766.50 1035.00 

Z-critical = 1.96 for α = 0:05 when applied for one tailed prediction. The arrowheads therefore, points the best performing algorithm 

and have larger W- value. 

 

 As discussed before, Wilcoxon Test was 

designed for a small amount of data. Therefore, similarity 

in McNemar’s and Wilcoxon’s test results supported the 

use these tests with more confidence. Moreover, if the 

researcher had sufficiently large data, then he/she could 

confidently use McNemar’s test as it was much simpler 

and easily applicable than Wilcoxon test (Kanwal et al., 

2011b).  

 Similarly, the general testing framework helped 

inferring general ranking of corner detection algorithms 

which was different from the ones presented by (Tomasi 

and Kanade, 1991; Smith and Brady, 1997; Rosten et al., 

2010 and He and Yung, 2008). Due to the application 

specific criteria used in these studies such as the number 

of true corners detected by (Smith and Brady, 1997), 

repeatability of the corner points by (Rosten et al., 2010) 

and localization accuracy by (He and Yung, 2008). 

Scores produced by both tests are presented in Table 4 

and 5 were used to generate the ranking of corner 

detection algorithms is shown in Table- 6. Algorithms 

with maximum number of pointing arrowheads secured 

highest position. Which appeared to be able to 

differentiate between corner and non-corner pixels 

followed by SUSAN  (Harris and Stephens, 1988). KLT 

algorithm showed a significant performance difference 

from all other algorithms for synthetic and real image 

data. The close position of FAST and SUSAN showed 

that circular mask based methods were more effective 

identify pixels even in the presence of noise as compared 

to curvature scale space algorithm.  
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Table 6. Ranking of Corner Detection algorithms 

based on Statistical Comparisons 

 

1
st
 Harris and Stephens 

2
nd

 SUSAN 

3
rd

 FAST 

4
th

 GLC 

5
th

 KLT 

 

 Moreover, both Wilcoxon and McNemar’s 

(Gibbons  and Chakraborti, 2011) test pointed out the 

better performing algorithm in pair-wise comparison for 

which these could be used as post-hoc procedures for 

multiple comparison (1 x N) tests such as Friedman test 

and Quade tests reported by (Theodorsson, 1987). The 

agreement of these two tests on multiple tests results not 

only proved the reliability of these non-parametric 

statistical methods but also highlighted the easy 

application of Wilcoxon and McNemar’s test for 

comparing vision related algorithms as well as in medical 

research as has been reported by (Durkalski  et al., 2003, 

Gonen et al., 2001, Saag et al., 1992,  Uemura et al., 

2001 and Wellner et al., 2004 ) where these tests were 

most commonly used. 

Conclusions: In this work, the use of non-parametric 

statistical tests was encouraged for analyzing different 

algorithms due to the fact that the preconditions that 

guaranteed the reliability of the parametric tests were not 

satisfied with real data. Similarly, using the correct 

testing framework for identifying an algorithm with the 

best performance, pair-wise tests were found to be 

suitable and equally reliable. Comparison of different 

corner detection algorithms yielded a ranking, showing 

Harris and Stephens to be performing better than all other 

algorithms even the newly developed ones followed by 

SUSAN. Furthermore, the use of non-application based 

testing framework helped to generate a general ranking of 

algorithms instead of application of specific performance 

assessment.  
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