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ABSTRACT: In current healthcare systems, doctors and paramedics have to individually observe 

the readings on attached devices to judge a patient’s condition. A smart healthcare system may 

generate an opinion about the patient by compiling data from various vital sign monitoring devices. 

However, multi-vendor devices face the data interoperability problem because of the varying standards 

used. Current solutions rely on centralized cloud/fog-based servers for interoperability which is a 

barrier to real-time multi-patient monitoring. This research presents an Edge-computing based 

distributed interoperability framework for smart healthcare devices and presents a system that 

continuously monitors the patients’ vital signs, ensemble the results for display in the nursing office, or 

in the doctor’s wallet. A healthcare setup was emulated for testing the proposed solution. Results are 

compared to the centralized authority-based system, which showed that the proposed solution 

performed better in terms of response time, with the advantage of utilizing the local resources to 

achieve data interoperability. We used deep learning techniques to learn patients’ critical situation 

from the vital signs monitoring database and predicted the critical situations to alert about the critical 

patients with 86% accuracy and 91% precision. Our model achieved a sensitivity of 90% and 

specificity of 72%. Hence a good overall performance has been achieved. 
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INTRODUCTION 

 Healthcare Informatics and the Internet of 

Things (IoT) has improved the healthcare systems and 

biomedical field (Majhi et al., 2019) and enabled the 

medical devices to connect with healthcare IT systems 

through online computer networks (Pulkkis et al., 2017). 

Vendor-specific patient monitoring systems (Siwicki, 

2020) are available that facilitate the doctors and 

paramedics to monitor a patient remotely. Also, the 

integration of patient-centric and multi-vendor healthcare 

devices is possible in smart medical applications with 

Medical Devices Plug and Play (MD-PnP) (Julian and 

Sue, 2012). But, besides many other compatibility and 

interoperability problems, one challenge is the difference 

in devices’ operated data formats (Scmidt, 2013; 

Manogaran et al., 2018; Monica, 2018). 

 Patient vital signs reflect essential body 

functions like heartbeat, breathing rate, temperature, and 

blood pressure (MedlinePlus, 2019). Patients’ vital signs 

monitoring devices and IoT-enabled healthcare solutions 

support a number of open and proprietary data formats 

(Pennic, 2014; CapsuleTech, 2018; CyberNET, 2020). 

Different health data standards like Consolidated-Clinical 

Document Architecture, Direct secure messaging, and 

Fast Healthcare Interoperability Resources are proposed 

for device interoperability (Pennic, 2014); however, 

vendors don’t really want to come together (Monica, 

2018), and the problem of data incompatibility still is a 

bottleneck. Moreover, patients visit various health care 

providers, hospitals and medical facilities, and the 

patients’ healthcare data are temporally and spatially 

scattered (Neal, 2011) which brings challenges, including 

data heterogeneity and interoperability (Azaria et al., 

2016). 

 The interoperability of healthcare monitoring 

devices with heterogeneous data formats is currently 

performed through cloud-based services (Chen et al., 

2016; Jabbar et al., 2017), and a data request faces 

intrinsic network delays and traffic congestion (Vilela et 

al., 2020), which is a bottleneck to the real-time access of 

patients’ data (Qadri et al., 2020). Thus, in the 

Healthcare-IoT domain with distributed data-sensing 

environment, the current solutions face deficiency of real-

time data sharing among the heterogeneous devices, 

demanding near-network translations through the use of 

Edge/Fog based solutions (Nair and Tanwar 2020). 

 This research aims to relieve the burden of 

continuously monitoring a patient’s vital signs for critical 

health conditions. By ensemble of the several vital signs 
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data, e.g., blood pressure, breathing, pulse and 

temperature, a healthcare system may generate an opinion 

about the patient condition and alarms can be generated 

for the critical observations. This work is based on the 

hypothesis that a device within the premises of a 

healthcare provider or a patient, having the capability of 

data format conversion with an excess of computing 

resources, can provide its services to other devices when 

required. The services of these capable devices are need 

to be acquired to augment data interoperability services at 

edge devices, which are conventionally provided by the 

cloud/fog-based infrastructures. 

 We proposed a distributed framework to provide 

data interoperability solutions for a smart healthcare 

system that resolves the conflicts and mismatches of data 

format through "Distributed Services Registration" and 

"Distributed Conversion Manager" processes. Instead of 

requesting the cloud for data translations, the proposed 

framework enables smart healthcare devices to share the 

patient’s data through translation capable devices in the 

vicinity. We used deep learning techniques to learn 

patients’ critical situation from the vital signs monitoring 

database and predicted the critical situations to alert about 

the critical patients. 

MATERIAL AND METHODS 

 We divided the proposed system into four layers 

of processing, as given in Figure 1. At the bottom layer, 

we have a patient under observation by the smart vital 

sign monitoring devices. These devices sent the vital 

signs data to a controller device at the Edge. The 

controller device availed the data format’s translation 

capabilities of Distributed Interoperability Devices 

present on the Edge. To make it possible, this research 

presented a framework for the distributed interoperability 

of smart healthcare devices. The Edge controller device 

compiled the vital signs readings and sent to the ’Nursing 

Office Display’ for remote monitoring of multi-patients 

on a single screen. 

 

 
Figure 1: Design Architecture of the Proposed System 
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 It also facilitated a doctor to access the patients’ 

live condition through his wallet device, connected with 

the Edge-controller. The controller device (ESP32 

controller) was programmed to generate an alarm on the 

connected displays if the compiled data of the patient's 

vital sign was crossing the given threshold. The Edge-

controller also sent the compiled data of the patient’s 

Vital Signs to the Fog-computer for further processing. 

We developed a deep-learning based critical alert 

forecasting module that took the compiled data and 

applied Convolutional Neural Network (CNN)-based 

deep learning algorithm to predict patient condition. CNN 

was trained for these forecasts with the patient vital signs 

monitoring database provided by the University of 

Queensland (Liu et al., 2012). We used the Jetson Nano 

Developer Kit from NVIDIA as our Fog-computer that 

produced the prediction about patient condition and sent 

these forecasts as alerts to the ‘Nursing Office Display’ 

and to the connected wallets of doctors. The developed 

system was capable of generating actual alerts and 

forecasting alerts. We maintained the patients' vital sign 

database on the cloud to store the information about 

critical patients so that a doctor could access the details at 

any time and prescribe the medication and other care-

related action. 

Distributed Interoperability Framework: We 

presented a distributed interoperability framework for 

data translations from capable devices, accessible to the 

hospital network and have spare computing resources. 

The proposed framework, shown in Figure 2, has 

facilitated to resolve the conflicts of various data formats. 

It consisted of four layers, namely, Registration, Listener, 

Data interoperability, and Publish. 

Registration Layer: It control the initialization of a 

transaction with token sharing based device 

authentication. This layer facilitated a healthcare provider 

or a smart healthcare device to get rights of interaction 

with a smart device by providing the key shared by the 

administrator. The registration layer supported two 

processes through its four modules. The first process was 

the Token Sharing handler that worked through Token 

Request Client () and Token Request Manager() modules. 

The former executes in a Requesting Device, e.g., 

healthcare provider’s wallet or any smart healthcare 

device that needed to connect with a patient’s smart 

device. It sent the registration request to the Edge 

Controller to get Tokens and the URIs of patient’s smart 

healthcare devices. The later executes inside the Edge 

Controller as a response side for authentication. When it 

received the registration request containing a valid key, it 

generated access-tokens for all the patient devices 

registered with the Edge Controller, mapped the devices 

in its device interaction table, and send the tokens and 

URIs od patient devices to the requesting device. 

 The second process handled by the registration 

layer was Distributed Services Registration that worked 

through its Registration Controller () and Registration 

Response () modules. The former executes in Edge 

Controller that broadcasted a request for registration of 

the nearby capable devices that have spare computing 

resources. 

.

 
Figure 2: Proposed Distributed Framework for Interoperability of smart healthcare Devices. 

 
 The broadcast request asks if any capable device 

can convert the data from Format-X to Format-Y, 

denoting the current format and required format. The 

Edge Controller maintained a register for listing the 

capable devices indexed by the tuple (Format-X to 

Format-Y) as translation capability. An algorithm for the 

registration controller process is given in Algorithm 1. 

Algorithm 1: Registration Controller 

Input: Current Format, Required Format 

Output: Capable Devices List 

Start 
A: Registration Broadcast 

Broadcast Request (Current Format, Required Format) 

devices = listen For Results() 
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if(!devicesis Empty()) 

 foreach D in devices 

   if(D. Authenticated () && D.HOP count<Threshold 

&&                        Already Exist==False) then 

     capable Devices. add(D.URI, D. pass Key,  

        D. hop Count, Current Format, Required Format) 

B: Registration Renew 

for each D in this. Capable Devices 

  Thread. Timer(2).send Registration Renew (D.URI, 

                                     D. pass Key) 

  if(D.reply() && D.HOP count<Threshold &&  

                         Already Exist==True) then 

      Capable Devices. update(D.URI) 

  else 

      capable Devices. Remove (D.URI) 

End 

 

 The later executes inside the smart healthcare 

devices that support multiple data formats, have spare 

computing resources, and are capable of data conversion 

for other devices. On receiving a broadcast registration 

request from Edge Controller, smart devices responded 

with their URI, communication token and conversion 

capability. We present the working of the registration 

response module as Algorithm 2.  

 

Algorithm 2: Registration Response 

Input: Registration broadcasted or renewal request 

received 

Output: URI, PassKey, hopCount, 

Start 

CF= Request.getCurrentFormat() 

RF= Request.getRequiredFormot() 

if (this.canconvert (CF to RF) ) 

   capbleList.add(this.URI, this.generatePassKey(),  

                          d.getHopCount(), CF, RF) 

foreach D in capableDevices 

 if(D. canconvert (CF to RF) 

 capbleList.add(D.URI, D.PassKey(), d.HopCount(), CF, 

RF) 

End 

To ensures a maximum probability of getting a 

translation capable device, we programmed the capable 

devices to maintain a register of translation capable 

devices available in their vicinity. 

 

Listener Layer: After successful registration, the listener 

layer handles the data requests made from authentic 

devices. The Data Request Client () was executed in the 

requesting devices as the client-side of the listener layer. 

The request for healthcare data was made using patient 

device URI and the token received from the Edge 

Controller. The Data Request Manager () was executed 

in the patient’s smart healthcare devices as the listener 

layer's response side. It validated the token and 

interpreted the data request to determine what data and in 

which format it was requested. If the device contained the 

data in the requested format, the data was published to 

the requesting device. However, if the requested data 

format was different, it forwarded the data to the data 

interoperability layer with a conversion request. 

However, if the token was not valid, then the request for 

data sharing was denied. 

Data Interoperability Layer: This layer receives the 

data translation request to convert it into a requester’s 

understandable format. The working of this layer is 

divided into two processes, namely, Local Conversions 

and Distributed Conversions. In the former process, Data 

Conversion Manager () was executed in the data device 

that made these devices capable of converting the data 

from the existing format to the required format by 

implementing the techniques given in previous researches 

(Kim et al., 2009; Zhang et al., 2018; Latif et al., 2015; 

Zaima et al., 2009; Mezei et al., 2018; Ma et al., 2018; 

Sonsilphong et al., 2016) The data conversion process, 

we applied in this work is depicted in Figure 3(a). The 

data format mapping model for JSON, XML and text is 

depicted in Figure 3(b). The mapping functions were 

implemented using Python libraries and modules to 

translate the data from one format to another. The 

response to the data request was made by converting and 

sending the data to the requesting device. However, the 

data was transferred to the Distributed Conversions 

process if the device could not convert the data into the 

requested format.  

 

 
Figure 3: (a) Data Conversion model consisting of 

data sensing, data pre-processing, filtering, 

and then Format Mapping, (b) A data format 

mapping model for JSON, XML and text 
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When a device couldn’t convert the data into a requested 

format and need help from an external device, it activated 

the Distributed Conversion Manager () by sending the 

data, current format, required format, requesting device 

URI, destination device URI, and Token key. This 

module got a list of conversion capable devices in the 

network from Edge-Controller. The controller device 

responded with a list of capable devices sorted priority 

wise on the base of the CPU-load factor and hop-count. 

The request was embedded with the payload and 

forwarded to an available device. The requesting device 

was intimated with the URI of a conversion device to 

receive data from that device. The capable device 

converted the data into the required data format through 

its data conversion manager and published the data 

directly to the requesting device. The algorithm for the 

module is given as Algorithm 3. 

Publish layer: This layer provides methods for secure 

sending and receiving of data between smart healthcare 

devices. The Secure Data Send () module was executed in 

the smart healthcare devices to send data to a requesting 

device (a healthcare provider’s wallet, a patient wallet, or 

other smart healthcare devices). After generating the 

healthcare data into a required format, the device called 

the secure data send method which applied encryption 

using the patient public key and added a checksum to the 

data with the SHA256 generator. HMAC/digital signature 

was added to data, which showed that the data was 

coming from the valid user and had not tampered. The 

data message was then transferred to the receiving side 

using an SSL/TLS (Cloudflare, 2019) handshake. The 

Secure Data Receive () module was executed in the data 

requesting devices to receive data from the patient’s 

smart healthcare devices. The data message contained a 

digital signature, a checksum, and is encrypted with the 

patient public key. This module validated the data source 

and decrypted the data using the patient key. 

 Edge-Controller broadcasted the conversion 

request with the current format and the required format 

and capable devices that can convert, responded with 

URI, hop-count, CPU-load factor, and token..  

Algorithm 3: Distributed Conversion Manager 

Input: Message Type, Data, Current Format, Required 

Format, RD.URI, DD.URI, PK 

//RD: Requesting Device DD: Destination Device, PK: 

Patient Key 

Output: forward data for conversion & pulishing to 

capable device 

Start 

if (Message-Type == “Conversion Request”) then 

Success = False 

Capable Device List [URI,TOKEN] = Administering 

Device. Get Conversion Devices List() 

for each device in capable Device List 

 if (Ping device) then //device available 

   if (device. Can Convert (CurrentFormat,  

                      Required Format))then 

      Ack = device. convert & send (Data, Current Format,  

                Required Format, RD.URI, PK, Token) 

     if (Ack==”done”) 

       Success = True; 

       return RD. revieve Data From (device. URI) 

if(!Success) 

    return “data not available in required format” 

else // (invalid Request) 

    return “Invalid Request Type” 

End 

 

 
Figure 4: Experimental Setup for Patient Vital Sign 

Sensing System. 

 

Experimental Setup: We developed an IoT based Health 

Monitoring System for web and android platforms to 

achieve continuous monitoring of critical patients. The 

web-based dashboard was developed using Laravel 

Framework 5.8 with PHP 7.1.3 and the android 

application was developed in Android studio 3.5. The 

system stored the patient records in SQL real-time 

database at the cloud server that was used by web-based 

panel and android application. We designed an 

experimental setup for simulating the Intensive 

Healthcare Unit. The hardware modules were 

implemented using Arduino IDE and MQTT protocols. 

The setup was designed using ESP32 Controller and vital 

sign sensors including Temperature Sensor (MAX6675), 

ECG Sensor (AD8232) and Pulse Oximeter Sensor 

(MAX30100). A snapshot of the patient vital sign sensing 

system is depicted in Figure 4, whereas a portray of the 

working system is given as Figure 5. We also prepared 

software devices to represent different vendors’ 

manufacturing with varying formats of data. The devices 
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emulated for the experimentation were blood pressure 

monitoring (BPM), glucose level monitoring (GLM), 

ventilators for oxygen level flow (OLF) control, and 

heart-beat rate (HBR) monitor. Each of these devices was 

executed on a Raspberry Pi module. Apache JMeter 5.3 

(Apache, 2020) was used for stress testing and analysis of 

test results. An automated system was designed to 

overcome the problems of overdosing, as it automatically 

adjusts the medicine input according to the patient 

readings. The controller device requested the readings 

from the patient devices and adjusted the dosage, flow, 

and speed of the infusion pump accordingly. For load 

tests, further IoT devices were programmed as soft 

devices in Java, and the system is connected using 

100Mbps LAN.  

 

 
Figure 5: A snapshot of the system developed for Multi-Patient Vital Sign Monitoring at Singel Screen 

 

RESULTS AND DISCUSSION 

 To assess our proposed method, we set up two 

environments (a centralized Health IoT setup, and a 

distributed Health IoT setup) for device communication 

in the case study. 

Centralized Setup: In this setup, smart healthcare 

devices were set up to take readings of healthcare data in 

different data formats like JSON, XML, Text, which are 

then sent to the server for storage. The server was 

installed with the data conversion manager module. So it 

was capable of responding to a request from any device 

by sending the data in the requested format. The data was 

received at the healthcare provider end after conversions 

at the cloud, so the problem of format mismatch was 

handled. 

Distributed Setup: The second environment for devices’ 

communication was designed with the proposed 

distributed framework. Here, the devices communicated 

directly with each other to translate and share the patient 

live monitoring data. The distributed framework based 

setup was divided into two scenarios.  

First Scenario: A smart healthcare device (having 

required data) implemented all layers of the proposed 

framework and was capable of converting and sharing 

healthcare records in the requested format. The healthcare 

provider wallet device was connected with the 

administering device (Edge Controller) using the patient 

key to get the URIs and tokens of the patient’s smart 

healthcare devices. The healthcare provider then 

requested data from patient healthcare devices in the 

required format.  

Second Scenario: A Vital Sign Monitoring device had 

low processing capability or unable to convert the data in 

the requested format. It used the data format conversion 

capability of a nearby device available in the smart 

healthcare network. In this case, a ’distributed services 

registration controller’ was installed in the Edge 

Controller to maintain connectivity parameters (URI, 

passkey, hop-count) of conversion-capable devices 

available in the smart healthcare network. The URIs, 

passkeys, and hop-counts were configured through the 

system administrator graphical user interface. 
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 For experimental purposes, a data requesting 

interface was developed using HTML and JavaScript that 

acted as a data requesting device to get patient’s 

healthcare data in XML, JSON, or Text format. We 

performed experimentation with an increasing number of 

software based (virtual) smart healthcare devices (10, 50, 

100, 500, and 1000) to compare the average response 

time for different types of requests made to the 

centralized environment setup and to the distributed 

environment setup. The experimental configurations were 

as follows. 

• IN EACH SLAB OF THE DEVICES, 70% WERE PREPARED 

AS LEGACY DEVICES THAT ARE UNABLE TO 

TRANSLATE THE DATA FORMATS AND NEED SERVICES 

FROM NEARBY CAPABLE DEVICES. 

• A 30% OF THE DEVICES WERE PREPARED AS 

TRANSLATION CAPABLE DEVICES, OUT OF WHICH 10% 

SUPPORTS XML-TO-JSON AND VICE VERSA, 10% 

SUPPORTS XML-TO-TEXT AND VICE VERSA, AND THE 

REMAINING 10% SUPPORTS JSON-TO-TEXT AND VICE 

VERSA. 

• A DEVICE REQUEST WAS GENERATED BY SELECTING A 

RANDOM DEVICE ON EACH CLOCK TICK, WHEREAS 

THE DEVICE’S NEED FOR DATA WAS STATICALLY 

PROGRAMMED. 

 To log the results, an experiment for each of the 

device’s slab was executed for a duration of 100 seconds. 

The results of the experiments are given in Table 1. It 

shows that the central server took more time to provide a 

response to the requests when the number of data devices 

requesting increased.  

 

Table 1: AVERAGE RESPONSE TIME for 

Centralized Setup and Distributed Setup. 

 

No. of 

Devices 

Average Response 

Time 

(Centralized Setup) 

Average Response 

Time 

(Distributed Setup) 

10 

50 

100 

500 

1000 

0.4250 sec 

0.5414 sec 

1.0854 sec 

1.6076 sec 

1.7243 sec 

0.392  sec 

0.456  sec 

0.470  sec 

0.484  sec 

0.5014 sec 

 Whereas in the case of our proposed distributed 

framework based setup, the data translations were 

performed through local devices, and hence an increase 

in the number of devices has a trivial effect over the 

average response time. 

 We performed another experimentation to log 

the network traffic load generated because of the 

distributed conversion to compare the proposed system 

with the existing centralized system. In the case of a 

centralized system, the translation tasks were to be 

performed by the cloud. For distributed setup, we 

categorized the task’s processing in the four categories 

with details as given in Table 2. In the Small LAN based 

Intensive Care Unit, the capable devices were able to 

process a total of 50 data interoperability requests at a 

time. A scenario was generated where an oxygen flow 

controller was asking for data of blood pressure and pulse 

rate of a patient under intensive care. In Large LAN 

based Hospital Network, a high processing device (X-ray 

machine) was added with the distributed registration and 

translation service. In the WAN based Edge of Network 

Translator, a scenario was emulated for a doctor’s 

interaction with the devices installed on patients’ bed. 

The data format conversion requests from patient’s 

devices were handled through the edge of the network 

device installed at the hospital network. The system 

forwarded the requests to the cloud for translation when it 

crossed the local capability threshold. In cloud-based 

translations, the patient’s data translations were 

performed through the cloud-based server.  

 We generated an increasing number of data 

translation requests (1000 max), for centralized setup and 

for each of the four scenarios discussed above. We 

logged the number of translation requests and where each 

handled by capable devices. The results are shown in 

Figure 6(a) for 10, 50, 100, 200, 500, 700, and 1000 

number of translation requests. We also logged the 

number of requests handled inside a specific group with 

the distributed setup and compared it with the centralized 

setup, Figure 6(b). It shows that the data transfer to the 

external network is less in the proposed framework-based 

setup than the existing cloud-based solutions.  

Table 2: Configurations to handle distributed conversion requests. 

 
 Number of Devices Conversion Capable 

Devices 

Max. possible Interoperability 

Requests 

Small LAN (ICU) 50 5 50 

Large LAN (Hospital) 200 20 200 local + 200 by X-Ray Machine 

WAN/ Edge of Network 400 25 400 by Edge Controller 

Cloud-based 1000 30 1000 by cloud 
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Figure 6: Experimentation Results (a) Data Format 

conversion requests handled by conversion 

capable devices in the network, (b) A 

comparison of Data Format conversion 

requests processed by centralized versus 

proposed distributed framework based 

devices’ communication. 

 

 
Figure 7: Fully Connected Convolutional Neural 

Network used for training and testing  

 

FORECASTING FOR CRITICAL ALERTS: We 

applied the Convolutional Neural Network (CNN) for 

health state prediction and forecast of a patient under 

observation. At the input layer, CNN was taking the 

reading of seven vital signs, as depicted in Figure 7. CNN 

was designed to work with two hidden layers and six 

output classes which are given in Table 3 as health states 

defined by American Hospital (Wikipedia, 2019). We 

trained our CNN model with the vital signs database of 

critical patients provided by the University of Queensland 

(Liu, 2012). The database was containing vital sign 

reading of 32 cases (Patients). It consisted of 25 general 

anesthetics, out of which 20 were with an endotracheal 

tube, 5 with a laryngeal mask airway, 3 patients were 

with spinal anesthetics, and 4 sedation cases. 

Electrocardiography, pulse oximetry and noninvasive 

arterial blood pressure monitoring were used in all cases, 

while other monitors were used at the anesthesiologists’ 

discretion. We used 70% of the data for trainings and 

remaining 30% was used for testing. 

 

Table 3: Vital Signs based patients' Health-states (American Hospital Association). 
 

Undetermined: Patient awaiting physician and/or assessment. 

Good: Vital signs are stable and within normal limits. Patient is conscious and comfortable. Indicators are excellent. 

Fair: Vital signs are stable and within normal limits. Patient is conscious, but may be uncomfortable. Indicators are 

favorable. 

Serious: Vital signs may be unstable and not within normal limits. Patient is seriously ill. Indicators are questionable. 

Critical: Vital signs are unstable and not within normal limits. Patient may be unconscious. Indicators are unfavorable. 

Dead: Vital signs have ceased. Patient has died. 

 

The performance of the prediction and forecasting 

module was evaluated for the case 1 of dataset by logging 

the results as a confusion matrix which are presented in 

Table 4. For performance analysis of our proposed CNN-

based model of patient health-condition prediction and 

forecasting, the values for Accuracy, Precision, Recall, 

and F1-measure were calculated. 
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Table 4: Confusion Matrix. 

 
 Predictive Positive Predictive 

Negative 

 

Actual Positive   True Positives 

45780 

  False Negatives 

  4535 
Sensitivity FNTP

TP

 
= 0.90 

Actual Negative   False Positives 

 4520 

  True Negatives 

   11565 
Specificity 

FPTN

TN

 
=0.72 

 Precision 

FPTP

TP

  
= 0.91 

 

F1 Score 

FNFP2TP

2TP

  
= 0.91 

Accuracy 

FNTP

TNTP





FPTN  
= 0.86 

 

 Our CNN-model got 86% accuracy and 91% 

precision which are pretty much acceptable. The 

sensitivity was measured to be 90% and specificity was 

72%. which are good. The results showed that a good 

overall performance has been achieved. We are actively 

working on further improvements. 

Conclusion: To provide data interoperability among 

heterogeneous smart healthcare devices, we have 

proposed a framework in which Health IoT devices 

interact using a distributed network. The experiments 

were performed to prove the efficacy of the proposed 

distributed system in response time and data traffic. The 

research has enabled data-compatibility among smart 

healthcare devices for real-time data sensing, especially 

useful for monitoring ICU patients. This research has 

reduced the cost of health care and helped a healthcare 

setup to improve the treatment process. We presented a 

remote health monitoring system along with an alarm to 

alert critical health states. It will help medical staff 

shortage, reduces visits to the patient regularly, and 

checks patient condition remotely. In future, this work 

may be extended to deploy a nation-wide healthcare 

system for improving and managing the health status of 

nationals. 
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