
Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 329

DISTRIBUTED INTEROPERABILITY SOLUTIONS SMART HEALTHCARE SYSTEM

FOR MULTI-PATIENT VITAL SIGNS MONITORING AND FORECAST OF CRITICAL

ALERTS

A. Jaleel
1
, M. Awais

2
, S. Khaldoon

2
, S. Shahid

2
and M. Shehzad

1,

1
Department of Computer Science, Rachna College of University of Engineering and Technology, Lahore, Pakistan

2
Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan

Corresponding author’s E-mail: abduljaleel@uet.edu.pk

ABSTRACT: In current healthcare systems, doctors and paramedics have to individually observe

the readings on attached devices to judge a patient’s condition. A smart healthcare system may

generate an opinion about the patient by compiling data from various vital sign monitoring devices.

However, multi-vendor devices face the data interoperability problem because of the varying standards

used. Current solutions rely on centralized cloud/fog-based servers for interoperability which is a

barrier to real-time multi-patient monitoring. This research presents an Edge-computing based

distributed interoperability framework for smart healthcare devices and presents a system that

continuously monitors the patients’ vital signs, ensemble the results for display in the nursing office, or

in the doctor’s wallet. A healthcare setup was emulated for testing the proposed solution. Results are

compared to the centralized authority-based system, which showed that the proposed solution

performed better in terms of response time, with the advantage of utilizing the local resources to

achieve data interoperability. We used deep learning techniques to learn patients’ critical situation

from the vital signs monitoring database and predicted the critical situations to alert about the critical

patients with 86% accuracy and 91% precision. Our model achieved a sensitivity of 90% and

specificity of 72%. Hence a good overall performance has been achieved.

Keywords: Health Informatics, Vital Sign Monitoring, Healthcare-IoT, Distributed Interoperability, Edge Computing,

Critical Alerts Prediction, Deep Learning.

(Received 01.09.2020 Accepted 23.11.2020)

INTRODUCTION

 Healthcare Informatics and the Internet of

Things (IoT) has improved the healthcare systems and

biomedical field (Majhi et al., 2019) and enabled the

medical devices to connect with healthcare IT systems

through online computer networks (Pulkkis et al., 2017).

Vendor-specific patient monitoring systems (Siwicki,

2020) are available that facilitate the doctors and

paramedics to monitor a patient remotely. Also, the

integration of patient-centric and multi-vendor healthcare

devices is possible in smart medical applications with

Medical Devices Plug and Play (MD-PnP) (Julian and

Sue, 2012). But, besides many other compatibility and

interoperability problems, one challenge is the difference

in devices’ operated data formats (Scmidt, 2013;

Manogaran et al., 2018; Monica, 2018).

 Patient vital signs reflect essential body

functions like heartbeat, breathing rate, temperature, and

blood pressure (MedlinePlus, 2019). Patients’ vital signs

monitoring devices and IoT-enabled healthcare solutions

support a number of open and proprietary data formats

(Pennic, 2014; CapsuleTech, 2018; CyberNET, 2020).

Different health data standards like Consolidated-Clinical

Document Architecture, Direct secure messaging, and

Fast Healthcare Interoperability Resources are proposed

for device interoperability (Pennic, 2014); however,

vendors don’t really want to come together (Monica,

2018), and the problem of data incompatibility still is a

bottleneck. Moreover, patients visit various health care

providers, hospitals and medical facilities, and the

patients’ healthcare data are temporally and spatially

scattered (Neal, 2011) which brings challenges, including

data heterogeneity and interoperability (Azaria et al.,

2016).

 The interoperability of healthcare monitoring

devices with heterogeneous data formats is currently

performed through cloud-based services (Chen et al.,

2016; Jabbar et al., 2017), and a data request faces

intrinsic network delays and traffic congestion (Vilela et

al., 2020), which is a bottleneck to the real-time access of

patients’ data (Qadri et al., 2020). Thus, in the

Healthcare-IoT domain with distributed data-sensing

environment, the current solutions face deficiency of real-

time data sharing among the heterogeneous devices,

demanding near-network translations through the use of

Edge/Fog based solutions (Nair and Tanwar 2020).

 This research aims to relieve the burden of

continuously monitoring a patient’s vital signs for critical

health conditions. By ensemble of the several vital signs

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 330

data, e.g., blood pressure, breathing, pulse and

temperature, a healthcare system may generate an opinion

about the patient condition and alarms can be generated

for the critical observations. This work is based on the

hypothesis that a device within the premises of a

healthcare provider or a patient, having the capability of

data format conversion with an excess of computing

resources, can provide its services to other devices when

required. The services of these capable devices are need

to be acquired to augment data interoperability services at

edge devices, which are conventionally provided by the

cloud/fog-based infrastructures.

 We proposed a distributed framework to provide

data interoperability solutions for a smart healthcare

system that resolves the conflicts and mismatches of data

format through "Distributed Services Registration" and

"Distributed Conversion Manager" processes. Instead of

requesting the cloud for data translations, the proposed

framework enables smart healthcare devices to share the

patient’s data through translation capable devices in the

vicinity. We used deep learning techniques to learn

patients’ critical situation from the vital signs monitoring

database and predicted the critical situations to alert about

the critical patients.

MATERIAL AND METHODS

 We divided the proposed system into four layers

of processing, as given in Figure 1. At the bottom layer,

we have a patient under observation by the smart vital

sign monitoring devices. These devices sent the vital

signs data to a controller device at the Edge. The

controller device availed the data format’s translation

capabilities of Distributed Interoperability Devices

present on the Edge. To make it possible, this research

presented a framework for the distributed interoperability

of smart healthcare devices. The Edge controller device

compiled the vital signs readings and sent to the ’Nursing

Office Display’ for remote monitoring of multi-patients

on a single screen.

Figure 1: Design Architecture of the Proposed System

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 331

 It also facilitated a doctor to access the patients’

live condition through his wallet device, connected with

the Edge-controller. The controller device (ESP32

controller) was programmed to generate an alarm on the

connected displays if the compiled data of the patient's

vital sign was crossing the given threshold. The Edge-

controller also sent the compiled data of the patient’s

Vital Signs to the Fog-computer for further processing.

We developed a deep-learning based critical alert

forecasting module that took the compiled data and

applied Convolutional Neural Network (CNN)-based

deep learning algorithm to predict patient condition. CNN

was trained for these forecasts with the patient vital signs

monitoring database provided by the University of

Queensland (Liu et al., 2012). We used the Jetson Nano

Developer Kit from NVIDIA as our Fog-computer that

produced the prediction about patient condition and sent

these forecasts as alerts to the ‘Nursing Office Display’

and to the connected wallets of doctors. The developed

system was capable of generating actual alerts and

forecasting alerts. We maintained the patients' vital sign

database on the cloud to store the information about

critical patients so that a doctor could access the details at

any time and prescribe the medication and other care-

related action.

Distributed Interoperability Framework: We

presented a distributed interoperability framework for

data translations from capable devices, accessible to the

hospital network and have spare computing resources.

The proposed framework, shown in Figure 2, has

facilitated to resolve the conflicts of various data formats.

It consisted of four layers, namely, Registration, Listener,

Data interoperability, and Publish.

Registration Layer: It control the initialization of a

transaction with token sharing based device

authentication. This layer facilitated a healthcare provider

or a smart healthcare device to get rights of interaction

with a smart device by providing the key shared by the

administrator. The registration layer supported two

processes through its four modules. The first process was

the Token Sharing handler that worked through Token

Request Client () and Token Request Manager() modules.

The former executes in a Requesting Device, e.g.,

healthcare provider’s wallet or any smart healthcare

device that needed to connect with a patient’s smart

device. It sent the registration request to the Edge

Controller to get Tokens and the URIs of patient’s smart

healthcare devices. The later executes inside the Edge

Controller as a response side for authentication. When it

received the registration request containing a valid key, it

generated access-tokens for all the patient devices

registered with the Edge Controller, mapped the devices

in its device interaction table, and send the tokens and

URIs od patient devices to the requesting device.

 The second process handled by the registration

layer was Distributed Services Registration that worked

through its Registration Controller () and Registration

Response () modules. The former executes in Edge

Controller that broadcasted a request for registration of

the nearby capable devices that have spare computing

resources.

.

Figure 2: Proposed Distributed Framework for Interoperability of smart healthcare Devices.

 The broadcast request asks if any capable device

can convert the data from Format-X to Format-Y,

denoting the current format and required format. The

Edge Controller maintained a register for listing the

capable devices indexed by the tuple (Format-X to

Format-Y) as translation capability. An algorithm for the

registration controller process is given in Algorithm 1.

Algorithm 1: Registration Controller

Input: Current Format, Required Format

Output: Capable Devices List

Start
A: Registration Broadcast

Broadcast Request (Current Format, Required Format)

devices = listen For Results()

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 332

if(!devicesis Empty())

 foreach D in devices

 if(D. Authenticated () && D.HOP count<Threshold

&& Already Exist==False) then

 capable Devices. add(D.URI, D. pass Key,

 D. hop Count, Current Format, Required Format)

B: Registration Renew

for each D in this. Capable Devices

 Thread. Timer(2).send Registration Renew (D.URI,

 D. pass Key)

 if(D.reply() && D.HOP count<Threshold &&

 Already Exist==True) then

 Capable Devices. update(D.URI)

 else

 capable Devices. Remove (D.URI)

End

 The later executes inside the smart healthcare

devices that support multiple data formats, have spare

computing resources, and are capable of data conversion

for other devices. On receiving a broadcast registration

request from Edge Controller, smart devices responded

with their URI, communication token and conversion

capability. We present the working of the registration

response module as Algorithm 2.

Algorithm 2: Registration Response

Input: Registration broadcasted or renewal request

received

Output: URI, PassKey, hopCount,

Start

CF= Request.getCurrentFormat()

RF= Request.getRequiredFormot()

if (this.canconvert (CF to RF))

 capbleList.add(this.URI, this.generatePassKey(),

 d.getHopCount(), CF, RF)

foreach D in capableDevices

 if(D. canconvert (CF to RF)

 capbleList.add(D.URI, D.PassKey(), d.HopCount(), CF,

RF)

End

To ensures a maximum probability of getting a

translation capable device, we programmed the capable

devices to maintain a register of translation capable

devices available in their vicinity.

Listener Layer: After successful registration, the listener

layer handles the data requests made from authentic

devices. The Data Request Client () was executed in the

requesting devices as the client-side of the listener layer.

The request for healthcare data was made using patient

device URI and the token received from the Edge

Controller. The Data Request Manager () was executed

in the patient’s smart healthcare devices as the listener

layer's response side. It validated the token and

interpreted the data request to determine what data and in

which format it was requested. If the device contained the

data in the requested format, the data was published to

the requesting device. However, if the requested data

format was different, it forwarded the data to the data

interoperability layer with a conversion request.

However, if the token was not valid, then the request for

data sharing was denied.

Data Interoperability Layer: This layer receives the

data translation request to convert it into a requester’s

understandable format. The working of this layer is

divided into two processes, namely, Local Conversions

and Distributed Conversions. In the former process, Data

Conversion Manager () was executed in the data device

that made these devices capable of converting the data

from the existing format to the required format by

implementing the techniques given in previous researches

(Kim et al., 2009; Zhang et al., 2018; Latif et al., 2015;

Zaima et al., 2009; Mezei et al., 2018; Ma et al., 2018;

Sonsilphong et al., 2016) The data conversion process,

we applied in this work is depicted in Figure 3(a). The

data format mapping model for JSON, XML and text is

depicted in Figure 3(b). The mapping functions were

implemented using Python libraries and modules to

translate the data from one format to another. The

response to the data request was made by converting and

sending the data to the requesting device. However, the

data was transferred to the Distributed Conversions

process if the device could not convert the data into the

requested format.

Figure 3: (a) Data Conversion model consisting of

data sensing, data pre-processing, filtering,

and then Format Mapping, (b) A data format

mapping model for JSON, XML and text

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 333

When a device couldn’t convert the data into a requested

format and need help from an external device, it activated

the Distributed Conversion Manager () by sending the

data, current format, required format, requesting device

URI, destination device URI, and Token key. This

module got a list of conversion capable devices in the

network from Edge-Controller. The controller device

responded with a list of capable devices sorted priority

wise on the base of the CPU-load factor and hop-count.

The request was embedded with the payload and

forwarded to an available device. The requesting device

was intimated with the URI of a conversion device to

receive data from that device. The capable device

converted the data into the required data format through

its data conversion manager and published the data

directly to the requesting device. The algorithm for the

module is given as Algorithm 3.

Publish layer: This layer provides methods for secure

sending and receiving of data between smart healthcare

devices. The Secure Data Send () module was executed in

the smart healthcare devices to send data to a requesting

device (a healthcare provider’s wallet, a patient wallet, or

other smart healthcare devices). After generating the

healthcare data into a required format, the device called

the secure data send method which applied encryption

using the patient public key and added a checksum to the

data with the SHA256 generator. HMAC/digital signature

was added to data, which showed that the data was

coming from the valid user and had not tampered. The

data message was then transferred to the receiving side

using an SSL/TLS (Cloudflare, 2019) handshake. The

Secure Data Receive () module was executed in the data

requesting devices to receive data from the patient’s

smart healthcare devices. The data message contained a

digital signature, a checksum, and is encrypted with the

patient public key. This module validated the data source

and decrypted the data using the patient key.

 Edge-Controller broadcasted the conversion

request with the current format and the required format

and capable devices that can convert, responded with

URI, hop-count, CPU-load factor, and token..

Algorithm 3: Distributed Conversion Manager

Input: Message Type, Data, Current Format, Required

Format, RD.URI, DD.URI, PK

//RD: Requesting Device DD: Destination Device, PK:

Patient Key

Output: forward data for conversion & pulishing to

capable device

Start

if (Message-Type == “Conversion Request”) then

Success = False

Capable Device List [URI,TOKEN] = Administering

Device. Get Conversion Devices List()

for each device in capable Device List

 if (Ping device) then //device available

 if (device. Can Convert (CurrentFormat,

 Required Format))then

 Ack = device. convert & send (Data, Current Format,

 Required Format, RD.URI, PK, Token)

 if (Ack==”done”)

 Success = True;

 return RD. revieve Data From (device. URI)

if(!Success)

 return “data not available in required format”

else // (invalid Request)

 return “Invalid Request Type”

End

Figure 4: Experimental Setup for Patient Vital Sign

Sensing System.

Experimental Setup: We developed an IoT based Health

Monitoring System for web and android platforms to

achieve continuous monitoring of critical patients. The

web-based dashboard was developed using Laravel

Framework 5.8 with PHP 7.1.3 and the android

application was developed in Android studio 3.5. The

system stored the patient records in SQL real-time

database at the cloud server that was used by web-based

panel and android application. We designed an

experimental setup for simulating the Intensive

Healthcare Unit. The hardware modules were

implemented using Arduino IDE and MQTT protocols.

The setup was designed using ESP32 Controller and vital

sign sensors including Temperature Sensor (MAX6675),

ECG Sensor (AD8232) and Pulse Oximeter Sensor

(MAX30100). A snapshot of the patient vital sign sensing

system is depicted in Figure 4, whereas a portray of the

working system is given as Figure 5. We also prepared

software devices to represent different vendors’

manufacturing with varying formats of data. The devices

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 334

emulated for the experimentation were blood pressure

monitoring (BPM), glucose level monitoring (GLM),

ventilators for oxygen level flow (OLF) control, and

heart-beat rate (HBR) monitor. Each of these devices was

executed on a Raspberry Pi module. Apache JMeter 5.3

(Apache, 2020) was used for stress testing and analysis of

test results. An automated system was designed to

overcome the problems of overdosing, as it automatically

adjusts the medicine input according to the patient

readings. The controller device requested the readings

from the patient devices and adjusted the dosage, flow,

and speed of the infusion pump accordingly. For load

tests, further IoT devices were programmed as soft

devices in Java, and the system is connected using

100Mbps LAN.

Figure 5: A snapshot of the system developed for Multi-Patient Vital Sign Monitoring at Singel Screen

RESULTS AND DISCUSSION

 To assess our proposed method, we set up two

environments (a centralized Health IoT setup, and a

distributed Health IoT setup) for device communication

in the case study.

Centralized Setup: In this setup, smart healthcare

devices were set up to take readings of healthcare data in

different data formats like JSON, XML, Text, which are

then sent to the server for storage. The server was

installed with the data conversion manager module. So it

was capable of responding to a request from any device

by sending the data in the requested format. The data was

received at the healthcare provider end after conversions

at the cloud, so the problem of format mismatch was

handled.

Distributed Setup: The second environment for devices’

communication was designed with the proposed

distributed framework. Here, the devices communicated

directly with each other to translate and share the patient

live monitoring data. The distributed framework based

setup was divided into two scenarios.

First Scenario: A smart healthcare device (having

required data) implemented all layers of the proposed

framework and was capable of converting and sharing

healthcare records in the requested format. The healthcare

provider wallet device was connected with the

administering device (Edge Controller) using the patient

key to get the URIs and tokens of the patient’s smart

healthcare devices. The healthcare provider then

requested data from patient healthcare devices in the

required format.

Second Scenario: A Vital Sign Monitoring device had

low processing capability or unable to convert the data in

the requested format. It used the data format conversion

capability of a nearby device available in the smart

healthcare network. In this case, a ’distributed services

registration controller’ was installed in the Edge

Controller to maintain connectivity parameters (URI,

passkey, hop-count) of conversion-capable devices

available in the smart healthcare network. The URIs,

passkeys, and hop-counts were configured through the

system administrator graphical user interface.

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 335

 For experimental purposes, a data requesting

interface was developed using HTML and JavaScript that

acted as a data requesting device to get patient’s

healthcare data in XML, JSON, or Text format. We

performed experimentation with an increasing number of

software based (virtual) smart healthcare devices (10, 50,

100, 500, and 1000) to compare the average response

time for different types of requests made to the

centralized environment setup and to the distributed

environment setup. The experimental configurations were

as follows.

• IN EACH SLAB OF THE DEVICES, 70% WERE PREPARED

AS LEGACY DEVICES THAT ARE UNABLE TO

TRANSLATE THE DATA FORMATS AND NEED SERVICES

FROM NEARBY CAPABLE DEVICES.

• A 30% OF THE DEVICES WERE PREPARED AS

TRANSLATION CAPABLE DEVICES, OUT OF WHICH 10%

SUPPORTS XML-TO-JSON AND VICE VERSA, 10%

SUPPORTS XML-TO-TEXT AND VICE VERSA, AND THE

REMAINING 10% SUPPORTS JSON-TO-TEXT AND VICE

VERSA.

• A DEVICE REQUEST WAS GENERATED BY SELECTING A

RANDOM DEVICE ON EACH CLOCK TICK, WHEREAS

THE DEVICE’S NEED FOR DATA WAS STATICALLY

PROGRAMMED.

 To log the results, an experiment for each of the

device’s slab was executed for a duration of 100 seconds.

The results of the experiments are given in Table 1. It

shows that the central server took more time to provide a

response to the requests when the number of data devices

requesting increased.

Table 1: AVERAGE RESPONSE TIME for

Centralized Setup and Distributed Setup.

No. of

Devices

Average Response

Time

(Centralized Setup)

Average Response

Time

(Distributed Setup)

10

50

100

500

1000

0.4250 sec

0.5414 sec

1.0854 sec

1.6076 sec

1.7243 sec

0.392 sec

0.456 sec

0.470 sec

0.484 sec

0.5014 sec

 Whereas in the case of our proposed distributed

framework based setup, the data translations were

performed through local devices, and hence an increase

in the number of devices has a trivial effect over the

average response time.

 We performed another experimentation to log

the network traffic load generated because of the

distributed conversion to compare the proposed system

with the existing centralized system. In the case of a

centralized system, the translation tasks were to be

performed by the cloud. For distributed setup, we

categorized the task’s processing in the four categories

with details as given in Table 2. In the Small LAN based

Intensive Care Unit, the capable devices were able to

process a total of 50 data interoperability requests at a

time. A scenario was generated where an oxygen flow

controller was asking for data of blood pressure and pulse

rate of a patient under intensive care. In Large LAN

based Hospital Network, a high processing device (X-ray

machine) was added with the distributed registration and

translation service. In the WAN based Edge of Network

Translator, a scenario was emulated for a doctor’s

interaction with the devices installed on patients’ bed.

The data format conversion requests from patient’s

devices were handled through the edge of the network

device installed at the hospital network. The system

forwarded the requests to the cloud for translation when it

crossed the local capability threshold. In cloud-based

translations, the patient’s data translations were

performed through the cloud-based server.

 We generated an increasing number of data

translation requests (1000 max), for centralized setup and

for each of the four scenarios discussed above. We

logged the number of translation requests and where each

handled by capable devices. The results are shown in

Figure 6(a) for 10, 50, 100, 200, 500, 700, and 1000

number of translation requests. We also logged the

number of requests handled inside a specific group with

the distributed setup and compared it with the centralized

setup, Figure 6(b). It shows that the data transfer to the

external network is less in the proposed framework-based

setup than the existing cloud-based solutions.

Table 2: Configurations to handle distributed conversion requests.

 Number of Devices Conversion Capable

Devices

Max. possible Interoperability

Requests

Small LAN (ICU) 50 5 50

Large LAN (Hospital) 200 20 200 local + 200 by X-Ray Machine

WAN/ Edge of Network 400 25 400 by Edge Controller

Cloud-based 1000 30 1000 by cloud

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 336

Figure 6: Experimentation Results (a) Data Format

conversion requests handled by conversion

capable devices in the network, (b) A

comparison of Data Format conversion

requests processed by centralized versus

proposed distributed framework based

devices’ communication.

Figure 7: Fully Connected Convolutional Neural

Network used for training and testing

FORECASTING FOR CRITICAL ALERTS: We

applied the Convolutional Neural Network (CNN) for

health state prediction and forecast of a patient under

observation. At the input layer, CNN was taking the

reading of seven vital signs, as depicted in Figure 7. CNN

was designed to work with two hidden layers and six

output classes which are given in Table 3 as health states

defined by American Hospital (Wikipedia, 2019). We

trained our CNN model with the vital signs database of

critical patients provided by the University of Queensland

(Liu, 2012). The database was containing vital sign

reading of 32 cases (Patients). It consisted of 25 general

anesthetics, out of which 20 were with an endotracheal

tube, 5 with a laryngeal mask airway, 3 patients were

with spinal anesthetics, and 4 sedation cases.

Electrocardiography, pulse oximetry and noninvasive

arterial blood pressure monitoring were used in all cases,

while other monitors were used at the anesthesiologists’

discretion. We used 70% of the data for trainings and

remaining 30% was used for testing.

Table 3: Vital Signs based patients' Health-states (American Hospital Association).

Undetermined: Patient awaiting physician and/or assessment.

Good: Vital signs are stable and within normal limits. Patient is conscious and comfortable. Indicators are excellent.

Fair: Vital signs are stable and within normal limits. Patient is conscious, but may be uncomfortable. Indicators are

favorable.

Serious: Vital signs may be unstable and not within normal limits. Patient is seriously ill. Indicators are questionable.

Critical: Vital signs are unstable and not within normal limits. Patient may be unconscious. Indicators are unfavorable.

Dead: Vital signs have ceased. Patient has died.

The performance of the prediction and forecasting

module was evaluated for the case 1 of dataset by logging

the results as a confusion matrix which are presented in

Table 4. For performance analysis of our proposed CNN-

based model of patient health-condition prediction and

forecasting, the values for Accuracy, Precision, Recall,

and F1-measure were calculated.

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 337

Table 4: Confusion Matrix.

 Predictive Positive Predictive

Negative

Actual Positive True Positives

45780

 False Negatives

 4535
Sensitivity FNTP

TP

= 0.90

Actual Negative False Positives

 4520

 True Negatives

 11565
Specificity

FPTN

TN

=0.72

 Precision

FPTP

TP


= 0.91

F1 Score

FNFP2TP

2TP


= 0.91

Accuracy

FNTP

TNTP





FPTN
= 0.86

 Our CNN-model got 86% accuracy and 91%

precision which are pretty much acceptable. The

sensitivity was measured to be 90% and specificity was

72%. which are good. The results showed that a good

overall performance has been achieved. We are actively

working on further improvements.

Conclusion: To provide data interoperability among

heterogeneous smart healthcare devices, we have

proposed a framework in which Health IoT devices

interact using a distributed network. The experiments

were performed to prove the efficacy of the proposed

distributed system in response time and data traffic. The

research has enabled data-compatibility among smart

healthcare devices for real-time data sensing, especially

useful for monitoring ICU patients. This research has

reduced the cost of health care and helped a healthcare

setup to improve the treatment process. We presented a

remote health monitoring system along with an alarm to

alert critical health states. It will help medical staff

shortage, reduces visits to the patient regularly, and

checks patient condition remotely. In future, this work

may be extended to deploy a nation-wide healthcare

system for improving and managing the health status of

nationals.

REFERENCES

Apache., (2020). Apache jmeter - download apache

jmeter. https://jmeter.apache.org/download_

jmeter.cgi. (Accessed on 01/01/2020).

Azaria, A., Ekblaw, A., Vieira, T. and Lippman, A.,

(2016). August. Medrec: Using blockchain for

medical data access and permission

management. In 2016 2nd International

Conference on Open and Big Data (OBD) (pp.

25-30). IEEE.

CapsuleTech., (2018). Compatibility of medical device

data with hospital information systems (white

paper). Technical report, CapsuleTech.com

North America. URL

https://capsuletech.com/wp-

content/uploads/2019/08/Capsule_Whitepaper-

CompatibilityDeviceData_082119.pdf.

(Accessed on 07/19/2020).

Chen, S.W., Chiang, D.L., Liu, C.H., Chen, T.S., Lai, F.,

Wang, H. and Wei, W., (2016). Confidentiality

protection of digital health records in cloud

computing. Journal of medical systems, 40(5),

p.124.

Cloudflare., (2019). What is ssl (secure sockets

layer)?https://www.cloudflare.com/learning/ssl/

what-is-ssl/. (Accessed on 05/13/2019).

CyberNET., (2020). A few problems medical

professionals face with ehr compatibility–

cybernet blog.

https://www.cybernetman.com/blog/problems-

medical-professionals-face-ehr-compatibility/,

(Accessed on 26/04/2020).

Jabbar, S., Ullah, F., Khalid, S., Khan, M. and Han, K.,

(2017). Semantic interoperability in

heterogeneous IoT infrastructure for healthcare.

Wireless Communications and Mobile

Computing, 2017.

Jaleel, A., Mahmood, T., Hassan, M.A., Bano, G. and

Khurshid, S.K., (2020). Towards Medical Data

Interoperability Through Collaboration of

Healthcare Devices. IEEE Access, 8,

pp.132302-132319.

Julian, G. and W. Sue., (2012). Medical device plug-and

play (mdpnp) interoperability program (white

paper). Technical report, URL

http://www.mdpnp.org/uploads/Oct12_MD_PnP

_White_Paper.pdf.Kshemkalyani, A.D. and

https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
https://capsuletech.com/wp-content/uploads/2019/08/Capsule_Whitepaper-CompatibilityDeviceData_082119.pdf
https://capsuletech.com/wp-content/uploads/2019/08/Capsule_Whitepaper-CompatibilityDeviceData_082119.pdf
https://capsuletech.com/wp-content/uploads/2019/08/Capsule_Whitepaper-CompatibilityDeviceData_082119.pdf
https://www.cloudflare.com/learning/ssl/what-is-ssl/
https://www.cloudflare.com/learning/ssl/what-is-ssl/
https://www.cybernetman.com/blog/problems-medical-professionals-face-ehr-compatibility/
https://www.cybernetman.com/blog/problems-medical-professionals-face-ehr-compatibility/
http://www.mdpnp.org/uploads/Oct12_MD_PnP_White_Paper.pdf
http://www.mdpnp.org/uploads/Oct12_MD_PnP_White_Paper.pdf

Pakistan Journal of Science (Vol. 72 No. 4 December, 2020)

 338

Singhal, M., 2011. Distributed computing:

principles, algorithms, and systems. Cambridge

University Press.

Kim, W., Lim, S., Ahn, J., Nah, J. and Kim, N., (2010).

Integration of IEEE 1451 and HL7 exchanging

information for patients’ sensor data. Journal of

medical systems, 34(6), pp.1033-1041.

Latif, S., Varaich, Z.A., Ali, M.A., Khan, M.A. and

Ayyaz, M.N., (2015). Real-time health data

acquisition and geospatial monitoring: A visual

analytics approach. In 2015 International

Conference on Open Source Systems &

Technologies (ICOSST) (pp. 146-150). IEEE.

Liu, D., Gorges, M. and Jenkins, S.A., (2012). University

of Queensland vital signs dataset: development

of an accessible repository of anesthesia patient

monitoring data for research. Anesthesia &

Analgesia, 114(3), pp.584-589.

Ma, X., Wang, Z., Zhou, S., Wen, H. and Zhang, Y.,

(2018). Intelligent healthcare systems assisted

by data analytics and mobile computing. In 2018

14th International Wireless Communications &

Mobile Computing Conference (IWCMC) (pp.

1317-1322). IEEE.

Majhi, V., Paul, S. and Jain, R., (2019). Bioinformatics

for healthcare applications. In 2019 Amity

international conference on artificial intelligence

(AICAI) (pp. 204-207). IEEE.

Manogaran, G., Chilamkurti, N. and Hsu, C.H., (2018).

Emerging trends, issues, and challenges in

Internet of Medical Things and wireless

networks. Personal and Ubiquitous Computing,

22(5-6), pp.879-882.

MedlinePlus. (2019). Vital signs: Medlineplus medical

encyclopedia.

https://medlineplus.gov/ency/article/002341.htm

,. (Accessed on09/27/2019).

Mezei, G., Somogyi, F.A. and Farkas, K., (2018). The

Dynamic Sensor Data Description and Data

Format Conversion Language. In ICSOFT (pp.

372-380).

Monica, K. (2018). How health data standards support

healthcare interoperability.

https://ehrintelligence.com/features/how-health-

data-standards-support-healthcare-

interoperability, (Accessed on 05/11/2019).

Nair, A., and Tanwar, S., (2020), Fog Computing

Architectures and Frameworks for Healthcare

4.0. In Fog Computing for Healthcare 4.0

Environments (pp. 55-78). Springer, Cham.

Neal, D., (2011). Choosing an electronic health records

system: Professional liability considerations.

Innovations in Clinical Neuroscience, 8(6), p.43

Pennic, J. (2014). In-depth: A guide to healthcare data

formats. https://hitconsultant.net/2014/04/28/in-

depth-a-guide-to-healthcare-data-

formats/#.Xrj1E2gvPIU,.(Accessed on

06/11/2019).

Pulkkis, G., Karlsson, J., Westerlund, M. and Tana, J.,

(2017), August. Secure and reliable Internet of

Things systems for healthcare. In 2017 IEEE 5th

international conference on future internet of

things and cloud (FiCloud) (pp. 169-176). IEEE.

Qadri, Y.A., Nauman, A., Zikria, Y.B., Vasilakos, A.V.

and Kim, S.W., (2020). The Future of

Healthcare Internet of Things: A Survey of

Emerging Technologies. IEEE Communications

Surveys & Tutorials, 22(2), pp.1121-1167.

Scmidt, B. (2013). Medical device interoperability: A

‘wicked problem’ of our time-patient safety &

quality healthcare.

https://www.psqh.com/analysis/medical-device-

interoperability-a-wicked-problem-of. (Accessed

on 05/06/2019).

Siwicki, B. (2020). Updated: A guide to connected health

device and remote patient monitoring vendors |

healthcare it news.

https://www.healthcareitnews.com/news/guide-

connected-health-device-and-remote-patient-

monitoring-2020. (Accessed on 09/27/2020).

Sonsilphong, S., Arch‐int, N., Arch‐int, S. and

Pattarapongsin, C., (2016). A semantic

interoperability approach to health‐care data:

Resolving data‐level conflicts. Expert Systems,

33(6), pp.531-547.

Vilela, P.H., Rodrigues, J.J., Righi, R.D.R., Kozlov, S.

and Rodrigues, V.F., (2020). Looking at Fog

Computing for E-Health through the Lens of

Deployment Challenges and Applications.

Sensors, 20(9), p.2553.

Wikipedia. (2019) Medical state - wikipedia.

https://en.wikipedia.org/wiki/Medical_state,.

(Accessed on 10/01/2019).

Zaima, H., Tsumori, O., Ono, S. and Ueda, T., Sharp

Corp, (2009). Data converter, data conversion

method, program for making computer function

as data converter and recording medium for

storing this program. U.S. Patent 7,535,477.

Zhang, W., Yang, J., Su, H., Kumar, M. and Mao, Y.,

(2018). Medical data fusion algorithm based on

internet of things. Personal and Ubiquitous

Computing, 22(5-6), pp.895-902.

https://medlineplus.gov/ency/article/002341.htm
https://medlineplus.gov/ency/article/002341.htm
https://ehrintelligence.com/features/how-health-data-standards-support-healthcare-interoperability
https://ehrintelligence.com/features/how-health-data-standards-support-healthcare-interoperability
https://ehrintelligence.com/features/how-health-data-standards-support-healthcare-interoperability
https://hitconsultant.net/2014/04/28/in-depth-a-guide-to-healthcare-data-formats/#.Xrj1E2gvPIU
https://hitconsultant.net/2014/04/28/in-depth-a-guide-to-healthcare-data-formats/#.Xrj1E2gvPIU
https://hitconsultant.net/2014/04/28/in-depth-a-guide-to-healthcare-data-formats/#.Xrj1E2gvPIU
https://www.psqh.com/analysis/medical-device-interoperability-a-wicked-problem-of
https://www.psqh.com/analysis/medical-device-interoperability-a-wicked-problem-of
https://www.healthcareitnews.com/news/guide-connected-health-device-and-remote-patient-monitoring-2020
https://www.healthcareitnews.com/news/guide-connected-health-device-and-remote-patient-monitoring-2020
https://www.healthcareitnews.com/news/guide-connected-health-device-and-remote-patient-monitoring-2020
https://en.wikipedia.org/wiki/Medical_state

