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ABSTRACT: The aim of this research was to deal with coupled problem of the symmetric 

regularized long wave equations. A semi analytical approach namely, the reduced differential 

transform method was applied to find the numerical solution of the coupled problem of symmetric 

regularized long wave equations. Mainly this technique was formed to compute the approximate 

solution in the form of convergent power series with simple and easy calculating procedures. The 

numerical results were computed by using Wolfram Mathematica 9.0 which determined the efficacy 

and pertinence of the proposed method. The obtained numerical results were compared with the exact 

solution which verified the recommended methodology. It was concluded that the approximate results 

were very much stable and convergent to the exact solution for the coupled problem of the symmetric 

regularized long wave equations. 
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INTRODUCTION 

 The concept of nonlinear partial differential 

equation is not new rather it is centuries old. It has been 

applied to explore new research dimensions in the second 

half of the 20
th

 century. The theory of nonlinear partial 

differential equations is one of the important research 

areas in different fields. Countless problems appear in 

various fields of engineering, mathematics and physics 

such as electrodynamics, fluid flow and quantum 

mechanics. One of the major roles of nonlinear partial 

differential equations is the study of nonlinear wave 

equations. For example, the Benjamin-Bona-Mahony 

equation is a nonlinear wave equation, which is also 

known as the regularized long wave equations (RLWE). 

The nonlinear wave equation with unbounded domain 

and several other such equations gains a lot of attention 

of scientists and engineers (Debnath, 1997). There are 

numerous numerical methods and techniques which have 

been applied to the initial and boundary value problems 

(IBVP) depending upon the nature of problems. For 

solving linear and nonlinear initial value problems in 

electrical circuits, the one-dimensional differential 

transform method (DTM) is used (Zhou, 1986). This 

approach is based on the Taylor series and hence builds a 

semi analytical technique. IBVP is transformed into a 

recurrence relation by using DTM. One-dimensional 

DTM is convenient for obtaining approximate solution of 

a problem that converges to the exact solutions. One-

dimensional DTM can be extended (Chen and Ho, 1999) 

into two-dimensional DTM for resolving the integral and 

differential equations. DTM is basically a semi analytical 

method which is used to get numerical solutions of linear 

and nonlinear differential equations. In DTM, each 

variable is required to be transformed that creates 

complexity in computations. This difficulty is overcome 

by the reduced differential transform method (RDTM) by 

making some changes (Keskin and Oturanc, 2010 a). 

Instead of transforming all the variables, this proposed 

method targets the transformation of the one variable 

calling the domain of interest (Keskin and Oturanc, 

2009). 

 RDTM is a technique that can be applied to 

work out for coupled problem of the symmetric 

regularized long wave equations (SRLWE). A closely 

related problem of single equation has been solved by 

this technique (Keskin and Oturanc, 2010 b). This 

technique is proposed to model the dynamics of weakly 

nonlinear ion acoustic and space charge wave’s and is 

formulated as for coupled problem of SRLWE. The 

name, SRLWE was given due to its resemblance to 

RLWE (Seyler and Fenstermacher, 1984). 

 SRLWE has been explored by using the 

conservative finite difference schemes (Wang et al., 

2007). Recently in 2014, research work on SRLWE has 

been done by conservative Crank-Nicolson finite 

difference scheme (Hu et al., 2014). 

 The present study is aimed to resolve the 

coupled problem of symmetric regularized long wave 

equations by the reduced differential transform method. 

The key idea of a long wave is the transformation of data 

for longer distances in shorter time. The most of the 
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problems dealt in the context of RDTM did not deal with 

the coupled problem when there are mixed partial 

derivatives. The current study deals with mainly such 

type of implications of partial differential equations. 

Finally, the numerical result obtained is compared with 

the exact solution and implementation of the method is 

verified as well. 

MATERIALS AND METHODS 

 The motivation of this study was to solve the 

coupled problem of symmetric regularized long wave 

equations. An approximate approach, namely, the 

reduced differential transform method was applied to 

obtain numerical solution. Basically, this method was a 

semi analytical technique to achieve approximate 

solution. 

By using RDTM, the following coupled problem of 

SRLWE was considered (Seyler and Fenstermacher, 

1984), is presented below 
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where 𝑧 was meant for the fluid velocity and 𝜑 denoted 

the dimensionless electron charge density. 

The solitary wave solution of the coupled problem (1) 

was presented below (Seyler and Fenstermacher, 1984), 
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where  indicated the velocity such that 
2

1  . 

In this paper, the coupled problem of SRLWE (1) was 

studied with the following initial condition: 
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were two known smooth 

functions which converged to zero rapidly as | |x  . 

i.e. ( , ) 0, ( , ) 0z x t x t   as | | , 0x t  . 

 The main idea of a long wave was the 

transformation of data for longer distances in shorter 

time. 

If the function is 𝑧(𝑥) then its differential transformation 

is given by the relation  
0

1
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x
x

Z k d z x
k 

  which 

showed that the variable 𝑥  and all ordinary derivatives of 

𝑧(𝑥) were represented by a parameter 𝑘. Similarly by the 

differential transformation, the function 𝑧(𝑥, 𝑡)  

depending on two variables (𝑥, 𝑡) could also be 

transformed  as 
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where both variables 𝑥 and 𝑡 as well as all partial 

derivatives with respect to 𝑥 and 𝑡 could be represented 

by two parameters ℎ and 𝑘 respectively. When all the 

independent variables and derivatives with respect to 

them were involved in transformation to the 

corresponding parameters, in that case such 

transformation was known as differential transformation. 

 It was worth noticing that if a variable of interest 

(domain of interest) was selected on the function 𝑧(𝑥, 𝑡) 

and 𝑡 was supposed as a variable of interest then it carried 

out the transformation with respect to the variable 𝑡 only, 

it had the following formula: 
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 A re-writing of the above equation was as 

follows: 
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 Now the function 𝑧(𝑥, 𝑡) was transformed in

( )
k

Z x , this transformation was the reduced differential 

transformation. Here, ( )
k

Z x  represented the transformed 

function and 𝑧(𝑥, 𝑡) represented the original function. 

Further, if it was reported that function 𝑧(𝑥, 𝑡) was 

transformed into the function ( )
k

Z x  then all the 

information about 𝑡 and all partial derivatives with 

respect to 𝑡 could be expressed from the index 𝑘 of 

( )
k

Z x , that was why, this function ( )
k

Z x  was written as 

𝑡-dimensional spectrum function of  𝑧(𝑥, 𝑡). 

 The derived result was assumed by the 

following inverse transformation reported by (Abazari et 

al., 2013; Ayaz, 2004 and Tari et al., 2009). 
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 From (4) and (5), it was obtained below reported 

by (Keskin and Oturanc, 2010 a): 
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 According to (6), it was observed that the idea of 

RDTM was initiated from DTM. 

 From (4) and (6), the following relations were 

found and is tabulated below reported by (Cenesiz et al., 

2010; Keskin and Oturanc, 2010c and Rawashdeh, 2013). 
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Table 1: some relations of the reduced differential transform method. 
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 The proposed method could be briefly described 

by considering simple IBVP, 
t xx
z z x   , with initial 

condition i.e. ( , 0) 0u x  , and boundary conditions i.e. 

(0, ) 0, (1, )u t u t t  . Its exact solution was

( , )u x t x t . 

By applying the relations from the Table-1 on the above 

IBVP, it was obtained as given below, 
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 Finally, the solution of IBVP was found to be 
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 Cleary, this series (numerical) solution obtained 

by RDTM converged to exact solution for sufficiently 

small ‘𝑡’. 
 When the Table-1 was applied on the nonlinear 

term of coupled problem of SRLWE (1), then the reduced 

differential transformation of nonlinear term i.e.
x

z z
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 And the reduced differential transformation of 

mixed partial derivatives term of SRLWE (1) was 

 ( , ) (say),xxt xxt kz z x t    
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 The finite terms approximation of ( , )z x t  was 

reported by (Keskin and Oturanc, 2010 d) is given below 
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 The iteration formula for coupled problem of 

SRLWE (1) was 
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 The equation (3) could be transformed as, 

0 0 0 0 (8)( ) ( ) and ( ) ( ).z x Z x x x   
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 For 0,1,2,3,k  in  (7), different values of 

( )
k

Z x  and ( )
k

x  could be attained. 

 By setting (8) into (7), the solution of ( )
k

Z x  and 

( )
k

x is given below 
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 By using the above transformed formulation, we 

obtained the desired series solution that could be 

estimated by the suitable programming. 

In the next section, the above Table-1 was applied in 

examples to solve and illustrate the effectiveness plus 

accuracy of the method. Wolfram Mathematica 9.0 was 

used for the numerical evaluation of the coupled problem 

of SRLWE (1). 

RESULTS AND DISCUSSIONS 

 To evaluate the execution and precision of the 

reduced differential transform method for resolving the 

coupled problem of SRLWE (1), the problem was 

analyzed and hundreds of numerical tables were formed 

at various time intervals. Since the long waves gave the 

inference about the transformation for long distances in 

short time. The solution of the problem was stable and 

the result was very much physical for the long distances 

along with short time. Wolfram Mathematica 9.0 was 

used for numerical computation. Some of the findings are 

presented here as examples and are given below: 

Example 1: While considering the coupled problem of 

SRLWE (1) with the initial conditions is given as under: 
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 By applying the Table-1 on (10), the reduced 

differential transformation was as under 
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 The following tables have shown the 

comparison of the numerical results of the coupled 

problem of SRLWE (1) with the exact solution (2). 

The comparison of RDTM solution of coupled problem 

of SRLWE (1) with the exact solution 𝑧(𝑥, 𝑡) of (2) at 

𝑡 = 0.3 and 𝑡 = 0.1 is given below. 

 

Table 2: Comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝒛(𝒙, 𝒕) of (2) at 

𝒕 = 𝟎. 𝟑 and 𝒕 = 𝟎. 𝟏. 
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Absolute Error 

0 

2 

4 

6 

8 

10 

2.430985151677 
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at 𝒕 = 𝟎. 𝟑 at 𝒕 = 𝟎. 𝟏 

 

 

 

 

 

 

 

 
Fig 1: Comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝒛(𝒙, 𝒕) of (2) at 

𝒕 = 𝟎. 𝟑 and 𝒕 = 𝟎. 𝟏. 

 The comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝜑(𝑥, 𝑡) of (2) at 

𝑡 = 0.3 and 𝑡 = 0.1 is given below 

Table 3: Comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝝋(𝒙, 𝒕) of (2) at 

𝒕 = 𝟎. 𝟑 and 𝒕 = 𝟎. 𝟏. 

 

at  𝒕 = 𝟎. 𝟑 

x Exact Solution Three Terms 

RDTM 

Absolute Error Four Terms 

RDTM 

Absolute Error 

0 

2 

1.620656767784 

1.214341488487 

1.567708333333 

1.242937730918 

0.052948434451 

0.028596242430 

1.567708333333 

1.243018809073 

0.052948434451 

0.028677320585 
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4 

6 

8 

10 

0.412320214995 

0.103177610627 

0.023813552934 

0.005393020742 

0.412766631579 

0.101171885693 

0.023208544260 

0.005248340743 

0.000446416583 

0.002005724934 

0.000605008673 

0.000144679998 

0.414783933584 

0.101424729815 

0.023257985063 

0.005259205713 

0.002463718589 

0.001752880812 

0.000555567870 

0.000133815028 

at  𝒕 = 𝟎. 𝟏 

0 
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1.661469164844 
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0.004313817894 

1.655671296296 
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0.004299737397 

0.005797868547 

0.002900809858 

0.000104283121 

0.000190769459 

0.000058679984 

0.000014080497 

1.655671296296 

1.074298499509 

0.338811112589 

0.082844796101 

0.019012555774 

0.004300139804 

0.005797868547 

0.002903812752 

0.000178998010 
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0.000056848844 
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Fig 2. Comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝝋(𝒙, 𝒕) of (2) at 

𝒕 = 𝟎. 𝟑 and 𝒕 = 𝟎. 𝟏. 
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Example 2: While considering the coupled problem of 

SRLWE (1) with the following initial conditions: 
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The reduced differential transformation for (12) was as 

under 
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 The following tables have shown the 

comparison of the numerical results of the coupled 

problem of SRLWE (1) with the exact solution (2). 

 The comparison of RDTM solution of coupled 

problem of SRLWE (1) with the exact solution  𝑧(𝑥, 𝑡) of 

(2) at 𝑡 = 0.3 and 𝑡 = 0.1 is given as under 

Table 4: Comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝒛(𝒙, 𝒕) of (2) at 

𝒕 = 𝟎. 𝟑 and 𝒕 = 𝟎. 𝟏. 

 

at  𝒕 = 𝟎. 𝟑 

x Exact Solution Three Terms 

RDTM 

Absolute Error Four Terms 

RDTM 

Absolute Error 

0 

2 

4 

6 

8 

10 

2.430985151677   

1.821512232731   

0.618480322493 

0.154766415941   

0.035720329401   

0.008089531113 

2.500000000000   

1.146462937137   

0.000246566588 

0.000000000140   

0.000000000000   

0.000000000000 

0.069014848322   

0.675049295594   

0.618233755904 

0.154766415801   

0.035720329401   

0.008089531113 

2.500000000000   

1.311466617106   

0.000283388616 

0.000000000185   

0.000000000000   

0.000000000000 

0.069014848322   

0.510045615625   

0.618196933876 

0.154766415756   

0.035720329401   

0.008089531113 

at  𝒕 = 𝟎. 𝟏 

0 

2 

4 

6 

8 

10 

2.492203747266   

1.607092030134   

0.507948171867 

0.124539301446   

0.028604106928   

0.006470726842 

2.500000000000   

0.628658827564   

0.000103763815 

0.000000000044   

0.000000000000   

0.000000000000 

0.007796252733   

0.978433202570   

0.507844408052 

0.124539301402   

0.028604106928   

0.006470726842 

2.500000000000   

0.634770074970   

0.000105127594 

0.000000000045   

0.000000000000   

0.000000000000 

0.007796252733   

0.972321955164   

0.507843044273 

0.124539301400   

0.028604106928   

0.006470726842 

 

The comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝜑(𝑥, 𝑡) of (2) at 

𝑡 = 0.3 and 𝑡 = 0.1 is given below 

 

Table 5: Comparison of RDTM solution of coupled problem of SRLWE (1) with the exact solution 𝝋(𝒙, 𝒕) of (2) 

𝒕 = 𝟎. 𝟑 and 𝒕 = 𝟎. 𝟏. 

 

at  𝒕 = 𝟎. 𝟑 

x Exact Solution Three Terms 

RDTM 

Absolute Error Four Terms RDTM Absolute Error 

0 

2 

4 

6 

8 

10 

1.620656767784   

1.214341488487   

0.412320214995 

0.103177610627   

0.023813552934   

0.005393020742 

1.666666666666   

0.864978524097   

0.000230150008 

0.000000000126   

0.000000000000   

0.000000000000 

0.046009898881   

0.349362964390   

0.412090064987 

0.103177610501   

0.023813552934   

0.005393020742 

1.666666666666   

0.947400342329   

0.000285353176 

0.000000000194   

0.000000000000   

0.000000000000 

0.046009898881   

0.266941146158   

0.412034861819 

0.103177610433   

0.023813552934   

0.005393020742 

at  𝒕 = 𝟎. 𝟏 

0 

2 

4 

6 

8 

10 

1.661469164844   

1.071394686756   

0.338632114578 

0.083026200964   

0.019069404618   

0.004313817894 

1.666666666666   

0.450856442626   

0.000091098277 

0.000000000040   

0.000000000000   

0.000000000000 

0.005197501822   

0.620538244130   

0.338541016301 

0.083026200923   

0.019069404618   

0.004313817894 

1.666666666666   

0.453909102560   

0.000093142839 

0.000000000042   

0.000000000000   

0.000000000000 

0.005197501822   

0.617485584195   

0.338538971739 

0.083026200921   

0.019069404618   

0.004313817894 
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 One can see in above Examples 1 and 2 that 

corresponding to 𝑡 = 0.3, using four terms RDTM, when 

𝑥 was increased from 0 to 10, the solution converged 

faster to the actual solution as compared with three terms 

RDTM. The same was true for 𝑡 = 0.1. Thus, the above 

tables and graphs demonstrated that, in general, when 𝑥 

was becoming larger and larger while 𝑡 was made smaller 

and smaller, the convergence rate was becoming faster. 

Since, partial differential equations in the coupled 

problem under consideration had complicated mixed 

partial derivatives (Handibag and Karande, 2012). The 

obtained results have drawn attention to the fact that 

RDTM was an applicable technique for finding solution 

of coupled system of nonlinear partial differential 

equations. The study confirmed the computational 

stability and efficacy of the method as reported by (Al-

Amr, 2014; Srivastava et al., 2014 and Yildirim, 2012). 

 It was noteworthy to mention that if readers 

wanted to compare results with boundary value problems 

then they could follow the following boundary condition 

reported by (Hu et al., 2014) as is given below 

 

( , ) ( , ) 0, ( , ) ( , ) 0 , [0, ]. 14) (L R L Rz x t z x t x t x t t T     

 

 There were many numerical methods which 

were applied to estimate the solutions of the nonlinear 

PDEs and related problems as has been reported by 

(Tadmor, 2012 and Bartels, 2015). The prototype 

solutions were found by using the generalized 

kudryashov approach to SRLWE (Bulut et al., 2015). In 

another methodology, the cubic B-spline was applied for 

obtaining numerical results of SRLWE after discretizing 

the equation reported by (Mittal and Tripathi, 2015). The 

meshless kernel based technique was also applied for 

obtaining the solution of SRLWE (Dereli, 2016). Many 

problems have been solved by RDTM using linear and 

nonlinear equations without applying any complicated 

polynomials reported by (Saravanan and Magesh, 2013). 

It was worth mentioning that most of the problems dealt 

in the context of the reduced differential transform 

method did not deal with the coupled problem when there 

were mixed partial derivatives. The current study mainly 

dealt with such types of implications of partial 

differential equations. 

 In the above given references, it could be seen 

that the investigation of exact solutions of nonlinear 

partial differential equations played a significant role in 

the study of physical phenomena of nonlinear problems. 

A number of approaches including exact, purely 

numerical and approximate techniques are presented in 

the literature for obtaining the solution of nonlinear 

partial differential equations reported by (Khan et al., 

2015; Lopez-Sandoval et al., 2015 and Naher, 2016).   

 This study was important for the coupled 

problem when nonlinearity and mixed partial derivatives 

occurred in the system of equations. This semi analytical 

technique was reliable and very much efficient, and 

converged quickly to the accurate solutions. The results 

obtained were of considerable interest. The complicated 

mathematical expressions were calculated by 

constructing various algorithms in Wolfram Mathematica 

9.0 for ensuring the proficiency of the method. The 

derived numerical computations will be helpful for 

further research. 

Conclusion: A coupled problem of symmetric 

regularized long wave equations was studied by applying 

the reduced differential transform method. The method 

was implemented in Wolfram Mathematica 9.0 and 

executed the program many times by taking various 

intervals of time and step sizes. The obtained numerical 

results were compared with the exact solution. It was 

concluded from the obtained numerical and graphical 

results that the reduced differential transform method 

turned to be very stable scheme. 
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