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ABSTRACT: Nelder-Mead Simplex Algorithm was proposed in 60’s and it had been enormously 

popular direct search method for unconstrained minimization. Despite its popularity, there existed 

some counter examples on which the method failed to find optimal solutions. This paper proposed a 

simplex volume based novel strategy for rescuing the method from stagnations or complete failures. 

The developed method was implemented to solve the state of the art benchmark functions. The 

comparison of the obtained results witnessed the remarkable low computational cost behavior and 

superiority of the proposed method over a number of existing methods.     
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INTRODUCTION 

 Nelder - Mead Simplex Algorithm (NMSA) is 

an upgraded version of original simplex based search 

method (Spendley et al., 1962). NMSA is obtained by 

furnishing Spenley’s method with moves like expansion 

and contraction (Lewis, 2000). NMSA is a popular 

method in optimization community due to ease of 

implementation and less computational cost as compared 

to other derivative free methods (Box, 1957). The 

convergence results of Multi-directional simplex based 

method by (Torczon, 1989) cannot be considered for 

NMSA due to change in interior angles of the simplexes. 

Some convergence results of NMSA have been 

established in low dimensions (Lagarias et al., 1998, 

2012) which cannot be generalized for higher 

dimensions.  There exist certain counter examples of 

objective functions on which NMSA fails by performing 

Repeated Inside Focused Contractions (RFICs) (Han, 

2000; McKinnon, 1998 and Dennis and Woods, 1987). 

One of the recent counter examples is the 2-dimensional 

function reported by (McKinnon, 1998) is presented 

below:   

  ( )  {
                          

                             
     

 NMSA fails to converge to optimal point when 

started with (0, 0), (1, 1), (
   √  

 
,
   √  

 
)  as the vertices of 

the initial simplex. Another counter example is a 2-

dimensional non-convex function reported by (Han, 

2000) is as under 

   ( )      (   )(     )(   )  

 Whenever the NMSA starts with initial 

simplexes H1 = {(0, 1), (0, – 1), (1, 0)} and H2 = {(– a, 

b), (a, – b), (1, 0)} with    
 

 
 and   

√ 

 
, it fails to 

converge to optimal point.     

 Failure of NMSA has attracted the researchers to 

moderate and equip NMSA with additional tools. Kelly 

proposes the idea of oriented restarts based on stagnation 

detection (Kelly, 1999). Whereas, this modification fails 

to guarantee the sufficient descent condition (Price et al., 

2002). The idea of using positive bases and frames based 

techniques has been introduced by (Coope and Price, 

2003). In another study, a convergent variant of NMSA 

based on the principle of grid restrainment has also been 

proposed by (Bũrmen et al., 2006). For global and large 

scale optimization Adaptive Nelder-Mead method, 

Variable Neighborhood Simplex Search method and 

Distributed Memory based implementation of NMSA 

have been proposed by (Klein and Neira, 2014; Gao and 

Han, 2012; Luangpaiboon, 2012 and Luersen et al., 

2004). Investigations of efficiencies of a number of 

variants of NMSA have been carried out by (Parkinson 

and Hutchinson, 1972). Through extensive numerical 

experiments, Byatt recommends a reversing frames based 

variant of NMSA (Byatt, 2000).  

 Most of the modifications of NMSA involve the 

coupling of additional strategies with it whenever it fails 

in making sufficient progress. In this study, a strategy 

based on new experimental stagnation detection 

observations has been proposed. The strategy tries to 

rescue the stagnated NMSA by selecting certain elements 

from a set of search directions through the best vertex. 
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MATERIALS AND METHODS 

Nelder-Mead Simplex Algorithm (NMSA): For 

minimizing an n-dimensional bounded below function   
     , each iteration of NMSA required a non-

degenerated simplex of n+1 vertices: 

       (                   )
 
        with        (  ) 

for               .  

 Triangles and tetrahedrons were considered as 

two special cases of simplexes in 2 and 3 dimensions 

respectively. Every iteration of NMSA was initialized by 

ordering all the vertices of the current simplex as: 

                       (1) 

 NMSA focused to improve V1 indirectly by 

replacing the worst vertex Vn+1 by a new point P using 

operations like reflection, expansion, contraction and 

obeying the rule: 

   =   + λ (      )   (2) 

 Where   was defined as the centroid or 

aggregate of all the vertices except the worst vertex:  

  
 

 
 ∑   

 
      (3) 

 The standard choices for parameter λ ( ,  ,     

and     ) for reflection, expansion, outside and outside 

contraction moves respectively were considered (Nelder 

and Mead, 1965). The generated points were denoted 

by                   respectively. In the case of failures of 

these moves, a shrink move was applied which replaced 

all the non-best vertices by new points using the rule: 

     
  (     )   : 2  j  n+1     (4) 

 As a result of which the simplex was shrunk 

towards the best vertex. Iterations of the method were 

conducted till the fulfillment of some specific termination 

criterion. Geometry of moves and schematic flowchart of 

NMSA are presented graphically in Fig. 1(a-b). A 

detailed description of NMSA with tie breaking rules was 

described by (Lagarias, 1998). 

Non Stagnated Nelder-Mead Simplex Algorithm (NS-

NMSA): The following claims were proposed and 

established for a non-degenerate simplex   with edges as 

column vectors     and the matrix M of these column 

vectors are defined below:  

   = (Vr – Vn+1)
t
   ,        ;                 (  )  

 

  
 |det (M)| 

 

    
 

                             (a)                                                                                 (b) 

Fig-1. (a) Moves of NMSA (b) Flowchart of NMSA 

 

Claims: For a non-degenerate simplex 

(i) The default search direction  ̅    –      and  ̅     

and were linearly independent. 

(ii)  ̅ and  ̅ were never orthogonal. 

Proof: The proof was established depending on the non-

degeneracy of the current simplex. 

 The proposed strategy comprised of the 

following two phases. 

i) Stagnation Determination Phase: In this phase to 

monitor the performance of the method, an iteration of 

NMSA was referred as a successful one if the best vertex 

of the simplex was improved otherwise it was taken as a 

failed iteration. If CFI was the number of consecutive 

failed iterations then the method was let work until CFI   

No, No being a fixed positive integer, otherwise another 

parameter RIC was used to count repeated inside 

contractions. The method was again let work until RIC   
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N1. Otherwise stagnation was detected and method was 

directed to the next phase.  

ii) Remedial Phase: Recalling the positive basis    for a 

subspace       if (Coope and Price, 2003 and Davis, 

1954) the result was n+1              (  )   2n 

reported by (Conn et al., 2009), the remedial phase 

started by generating a maximal positive standard 

basis     { ̂        }. The members of    were 

utilized in two ways as presented below: 

(1) Selection of certain search directions   ̂  

satisfying    |〈  ̂   ̂ 〉|             (5) 

(2) When |〈  ̂  ̂  〉|    for some  ̂  then  ̅ was used in 

place of  ̅.  

 Supposing that U was the set of all selected   ̂    

the volumes ∆c and ∆E of the current and the expected 

simplexes were calculated. An expected simplex was 

obtained by replacing the edge  ̅ by the selected   ̂ . The 

improvement was sought in the worst vertex or the best 

vertex according to the following scheme. 

1. Set j =1 

2. IF  j > |U|, go to step 5 ELSE go to step 3  

3. If   
  

  
  ≥   , go to step 4 ELSE set j = j+1 and go 

to step 2 

4. IF  (   ‖ ̅‖  ̂ )         

Set             ‖ ̅‖  ̂   ,         (   ‖ ̅‖  ̂ ) 

and Go to step 5.  

ELSEIF    (      ̂ )     ,  

       Set           ̂   and     (      ̂ ) and 

Terminate. 

ELSE Set j = j+1 and go to step 2.  

5. If the best vertex was changed update   and 

terminate ELSE complete a frame about the best vertex 

along the members of       at a distance   and 

terminate. 

The above resulting stagnation free algorithm was named 

as Non-Stagnated-Nelder-Mead Simplex Algorithm (NS-

NMSA).    

Convergence Of NS-NMSA: For any simplex Y its 

diameter was defined as: 

   ( )     {‖     ‖               }      

 Using the aggregate point   ̅, the inner and outer 

central radii of the simplex were calculated as     

     {‖ ̅    ‖} and           {‖ ̅    ‖} 

respectively. Then 

                    ( )                    (6) 

The sequence * ( )+ was constructed as defined below: 

 ( )          { (   )   
( )

      
( )

}    (   )         

Provided that    
( )

    {   
( )

      }       

   
( )

     {‖  
( )

   
( )

‖        }. 

Then at any iteration k:  ( )      ( ( )) 

Lemma: For n > 1 and the uniformly convex objective 

function the sequence of diameters of the simplexes 

generated by NMSA converged to zero provided that the 

NMSA used infinitely many expansions or contractions 

(Gao and Han, 2014).  

Corollary 1: By (6) and the above lemma we got:  

         ( )    

Proposition: Each iteration of NMSA which reduced the 

simplex volume reduced at least one of the radii. 

Proof: At k
th

 iteration NMSA aimed to replace the worst 

vertex     
( )

of the simplex  ( ) using equation (2) and in 

case of failure it replaced all the non-best vertices using 

equation (4). The relation between the volumes of 

simplexes  ( )and  (   ) was given by  (  (   ))  
          (  ( )) (Conn, 2009). This resulted in a decreased 

volume for a contraction or shrink step. When an inside 

contraction was accepted, the new simplex changed to   

 (   )  ( ( )  *    
( )

+)  *     
 

 
( ( )      

( )
)+. 

With usual meanings of centroids   ( )  (   ) and 

 ̅( )  ̅(   ) the following result was obtained. 

 ̅(   )       ( ̅( )      
( )

)  
 

 (   )
( ( )      

( )
)

  (7) 

The relation (   )  ̅( )     ( )      
( )

and the 

equation (7) directed to  

‖ ̅(   )      ‖  
 

 
‖ ̅( )      

( )
‖          (8) 

In the case of shrink step  

‖ ̅(   )    
(   )

‖   
 

 
‖( ̅( )    

( )
)‖        (9) 

 From (8) and (9) it was concluded that at least 

one central distance reduced whenever simplex volume 

was reduced. 

Corollary: If NMSA performed a finite number of 

reflections and expansions then the inner radius tended to 

zero as iterations of NMSA proceeded. 

 The consequences of above results guaranteed 

the existence of following assumptions: 

a) The sequence *  
( )

+ was bounded.  

b) f was continuously differentiable with Lipschitz 

gradient in a bounded subset of R 
n
. 

c) For each  ̂        , a frame was completed 

about   
( )

at a step size  ( ) so that  

  ||  ||  ||    ( )  ̂ ||     

          (,            -)   ,      

d)  ( )    as     .  

 These assumptions established the existence of a 

stationary point (Nelder and Mead, 1965).
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RESULTS AND DISCUSSIONS 

Implementation Details: NS-NMSA was implemented 

by starting with a non-degenerated regular initial simplex 

(Conn el at., 2009; Jacoby el at., 1972 and Spendley el 

at., 1962). Other settings were:  

(i)  The termination criterion for NS-NMSA was: 

            ε (Gao and Han, 2012)  

(ii) The parameters No and N1 were set as: No = 

dimension, N1 =10 for the test problems in table 2 and No 

= 2(dimension) for counter examples.  

(iii) FE (The number of function evaluations required to 

reach the minimum),     (The average simplex value): 

    
 

   
 ∑   

   
    and     (The angle between  ̅ 

and   ̅ ). 

Comparison of Performance on McKinnon’s 

Function: The optimal solution found by NS-NMSA was 

V
*
= (0, – 0.5) with f (V

*
) = – 0.25 at V

*
= (0, – 0.5) with 

196 function evaluations. Fig. 2 (d) exhibits the 

successive simplexes of NMSA and Fig. 3 (a) shows the 

convergence of ASV for NS-NMSA to the optimum value 

and divergence of NMSA to a non-optimum value. Fig. 3 

(b) presents the diminishing variations of angle ANG of 

both of the NMSA and NS-NMSA. 

               
                                      (a)                                                   (b)                                                   (c) 

               
                         (d)                                                       (e)           (f) 

Fig-2. (a) NMSA on McKinnon’s function.  (b) NMSA on Han’s function with H1 (c) NMSA on Han’s function 

with H2 (d) NS-NMSA on McKinnon’s function (e) NS-NMSA on Han’s function with H1 (f)  NS-NMSA 

on Han’s function with H2. 
 

Comparison of Performance on Han’s Function: NS-

NMSA found the optimal point (0, –1.3623898059) 

costing only 161 and 157 function-evaluations when 

started with simplexes H1 and H2 respectively. NMSA 

found the optimal point after a long stagnation by costing 

86% more computational cost while using simplex H1 but 

converged to non-stationary point costing approximately 

same amount of additional computational cost. Table-1 

shows that in both the cases NS-NMSA efficiently found 

the optimal solutions with very low cost as compared to 

the original one. 

Table 1. Comparison of performances NMSA and NS-NMSA on Han’s function. 

 

Initial Simplex 
NMSA  NS-NMSA 

FE Function Value  FE Function Value 

H1 1178 –5.43970418863036 161 –5.43970418863036 

H2 1172 –4.84336877871108 157 –5.43970418863036 
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 Iteration-wise the progress of NMSA and NS-

NMSA for Han’s function for two initial simplexes H1 

and H2 have been shown in Fig. 3(c, d, e, f). 

        
(a)     (b)    (c) 

            
(d)    (e)    (f) 

Fig-3. (a) Convergence comparison on McKinnon’s function (b) Variations of ANG on McKinnon’s function (c) 

Convergence comparison on Han’s function using H1  (d) Variations of ANG on Han’s function H1 (e) 

Convergence comparison on Han’s function using H2  (f) Variations of ANG on Han’s function H2 

 

 NS-NMSA was also applied to a number of 

benchmark test problems enlisted by (Jorge, 1981) along 

with their standard initial guesses. The results were 

obtained by using a regular simplex from the standard 

initial guess except McKinnon’s function. The 

comparison of performance of NS-NMSA with other 

approaches used in the literature is presented in Table- 2. 

 Test functions of various dimensions, presented 

in Table 2, were also considered for comparing the 

performance the proposed method. Test functions 1-7 

were of dimensions 2, test functions 8-13 were of 

dimensions 3, 14-19 were of dimensions 4, 20-21 had 

dimensions 6, 22-23 were of dimensions 8 and test 

function 24 was of dimensions 10. In the past studies, the 

problems in Table 2 were also solved by standard NMSA 

and its convergent variants as reported by (Byatt et al., 

2000 and Price et al., 2002). Table-2 showed that NS-

NMSA outperformed standard NMSA and its convergent 

variants on most of the test functions. 

 For test functions 10 and 11 the NS-NMSA was 

a little bit costly as compared to convergent variants but 

found the correct optimal point. NMSA was economical 

only for the functions 6 and 16 but produced optimal 

points utilizing a large number of function evaluations for 

the functions 9, 11 and 17. Some of the problems were 

also solved by a Direct Search Conjugate Directions 

Algorithm (DSCDA) as reported by (Coope and Price, 

2000a). 

 As observed from Table 3 the DSCDA was 

better than NS-NMSA only on the functions 2, 4, 10 and 

17. But for the remaining functions NS-NMSA 

outperformed DSCDA in terms of solution quality. 

 In another study, a Generating Set Search 

method based on curvature information (GSSC) was 

proposed and the superiority of GSSC over Compass 

Search Method (CSM) based on numerical results was 

also demonstrated (Frimannslund and Steihaug, 2007).  

The minimum function values (number of function 

evaluations) was found by GSSC for functions 1, 3, 4, 5, 

7,14, 18, 21, 22 and 25 as 7.2×10
 –3 

(445.5), 1×10
 00 

(59), 

1×10
 12 

(77), 6.12×10
 –3 

(94), 9.84×10
 –4 

(172), 7.71×10
 –3 

(344), 9.01×10
 –3 

(434), 9.37×10
 –3 

(7421), 6.44×10
 –3 

(301) and 5.9×10
 –3 

(180) respectively. It was evident 

from Table-3 that the performance of NS-NMSA was 
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noticeably better than that of GSSC and hence better than 

that of CSM.       

 Price et al., (2008) developed two schemes of 

axial parallel frames and randomly oriented frames 

applied and them 5 times on each of the functions 1, 4, 5, 

8, 12, 15, 22, 23 and 24. The comparisons of the results 

of NMSA with both of the schemes are presented in 

Table-4.   

Table 2. Comparisons of performance NS-NMSA with other approaches. 

 

No. Function 

(McKinnon, 1998; Coope and 

Price, 2000)  

(Coope and Price, 2000) NS-NMSA 

FE Function 

value 

Rank FE Function 

value 

Rank FE Function Value Rank 

1 Rosenbrock 219 1.099×10
 –18

 3 285 1.3905× 10
 –17

 2 190 4.2525×10
 –19

 1 

2 Freundenstien & 

Roth 

172 48.9843 2 217 48.9843 3 153 48.984253 1 

3 Powell badly scaled 754 1.1106×10
 –25

 2 969 4.2398 ×10
 –25

 3 796 1.8902×10
 –27

 1 

4 Brown badly scaled 335 7.0386×10
 –18

 2 498 7.9979×10
 –17

 3 330 7.5665×10
 –19

 1 

5 Beale 162 6.1142×10
 –18

 3 191 .0782×10
 –18

 2 145 1.8681×10
 –20

 1 

6 Jenrich and Sampson 133 124.362 2 157 124.362 3 154 124.362 1 

7 McKinnon 290 –2.5 2 426 –2.5 3 196 –2.5 1 

8 Helical Valley 428 4.7847×10
 –17

 2 342 9.8321×10
 –16

 3 294 1.4833×10
 –18

 1 

9 Bard 100004 1.74287 3 1134 1.74287 2 270 0.008214877 1 

10 Gaussian 216 1.1279×10
 –08

 3 194 1.1279×10
 –08

 1 207 1.1279×10
 –08

 2 

11 Meyer 100004 87.945 3 2801 87.945 1 3204 87.945 2 

12 Gulf Research 687 1.1389×10
 –22

 2 529 5.4451×10
 –19

 3 899 1.2223×10
 –24

 1 

13 Box 701 3.0574×10
 –22

 2 478 8.7045×10
 –21

 3 455 2.3120×10
 –27

 1 

14 Powell singular 956 3.5635×10
 –28

 2 1045 6.735×10
 –26

 3 836 1.422×10
 –32

 1 

15 Woods 572 1.5639×10
 –17

 2 656 2.574×10
 –16

 3 438 3.6737×10
 –18

 1 

16 Kowalik & Osborne 398 3.0750×10 
–4

 1 653 3.0750×10
 –04

 3 408 3.0750×10
 –4

 2 

17 Brown & Dennis 100004 85822.2 3 603 85822.2 2 454 85822.2016 1 

18 Penalty I 1371 2.2499×10
 –05

 2 1848 2.2499×10
 –05

 3 888 2.2499×10
 –05

 1 

19 Penalty II 3730 9.3762×10
 –06

 2 4689 9.3762×10
 –06

 3 2808 9.3762×10
 –06

 1 

20 Biggs Exp6 1130 5.6556×10
 –03

 3 4390 1.1613×10
 –20

 2 2784 1.264×10
 –22

 1 

21 Extended 

Rosenbrock 

7015 2.7907×10
 –17

 2 3110 1.3584×10
 –14

 3 2033 2.4378×10
 –19

 1 

22 Extended Powell 2513 5.1316×10
 –7

 3 7200 6.4382×10
 –24

 2 3239 1.3818×10
 –29

 1 

23 Variably dimensional 3780 2.0847×10
 –16

 2 2563 1.2478×10
 –15

 3 1028 2.3046×10
 –17

 1 

24 Trigonometric 3105 2.7950×10
 –5

 3 2466 2.7950×10
 –5

 2 2406 6.0101×10
 –18

 1 

Overall Ranks   2.333   2.542   1.125 

 

Table 3. Comparisons of performance NS-NMSA with other approaches 

 

No. Function 
 (Coope and Price, 2000)  NS-NMSA  

 FE Function value Rank FE Function Value Rank 

1 Rosenbrock  380 3.6×10
 –11

 2 190 4.2525×10
 –19

 1 

2 Freundenstien & Roth  75 48.984253 1 153 48.984253 2 

3 Powell badly scaled  1784 6.7×10
 –18

 2 796 1.8902×10
 –27

 1 

4 Brown badly scaled  58 1.4×10
 –20

 1 330 7.5665×10
 –19

 2 

5 Beale  87 5.6×10
 –13

 2 145 1.8681×10
 –20

 1 

6 Jenrich and Sampson  154 124.4 2 154 124.362 1 

7 McKinnon  11 0 2 196 –2.5 1 

8 Helical Valley  303 4.2×10
 –11

 2 294 1.4833×10
 –18

 1 

9 Bard  200 17.43 2 270 0.008214877 1 

10 Gaussian  47 1.1×10
 –8

 1 207 1.1279×10
 –08

 2 

11 Meyer  9070 87.95 2 3204 87.945 1 

12 Gulf Research  655 1.8×10
 –13

 2 899 1.2223×10
 –24

 1 

13 Box  227 0.01409 2 455 2.3120×10
 –27

 1 
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14 Powell singular  242 2.6×10
 –11

 2 836 1.422×10
 –32

 1 

15 Woods  315 4.9×10
 –12

 2 438 3.6737×10
 –18

 1 

16 Kowalik & Osborne  317 3.1×10
 –4

 2 408 3.0750×10
 –4

 1 

17 Brown & Dennis  232 85822 1 454 85822.2016 2 

18 Penalty I  --- --- --- 888 2.2499×10
 –05

 --- 

19 Penalty II  --- --- --- 2808 9.3762×10
 –6

 --- 

20 Biggs Exp 6  3403 1.9×10
 –11

 2 2784 1.264×10
 –22

 1 

21 Extended Rosenbrock  --- --- --- 2033 2.4378×10
 –19

 --- 

22 Extended Powell  --- --- --- 3239 1.3818×10
 –29

 --- 

23 Variably dimensional  --- --- --- 1028 2.3046×10
 –17

 --- 

24 Trigonometric  --- --- --- 2406 6.0101×10
 –18

 --- 

Overall Ranks    1.78   1.22 

 

Table 4. Comparisons of performance NS-NMSA with those in (Price e al; 2008). 

 

No. Function 

Scheme 1  Scheme 2 NS-NMSA 

FE Function 

value 

Rank 
FE 

Function 

value 

Rank 
FE 

Function 

Value 

Rank 

1 Rosenbrock 4338 5×10
 –15

 3 4442 8×10
 –15

 2 190 4.2525×10
 –19

 1 

4 Brown badly scaled 10598 3×10
 –6

 2 9606 8×10
 –6

 3 330 7.5665×10
 –19

 1 

5 Beale 3638 5×10
 –16

 3 3038 3×10
 –16

 2 145 1.8681×10
 –20

 1 

8 Helical Valley 8406 3×10
 –15

 2 6595 4×10
 –15

 3 294 1.4833×10
 –18

 1 

12 Gulf Research 15583 3×10
 –12

 3 9159 7×10
 –16

 2 899 1.2223×10
 –24

 1 

15 Woods 15610 3×10
 –14

 3 15451 3×10
 –14

 2 438 3.6737×10
 –18

 1 

22 Extended Powell 11074 1×10
 –13

 2 8381 2×10
 –4

 3 3239 1.3818×10
 –29

 1 

23 Variably dimensional 34679 2×10
 –4

 3 42545 3×10
 –15

 2 1028 2.3046×10
 –17

 1 

24 Trigonometric 14209 9×10
 –16

 3 14367 8×10
 –17

 2 2406 6.0101×10
 –18

 1 

Overall Ranks    2.667   2.334    1 

 

 In Tables 2-4, the algorithm that produced the 

lowest final function value of a test function was ranked 1 

and for the equal final function values the algorithm 

utilizing smaller number of function evaluations was 

ranked 1. The last rows of Tables 2-4 exhibited the 

overall ranks of the algorithms for the problems 

considered for comparisons.  

Conclusion: A low cost non-stagnated convergent 

variant of Nelder-Mead simplex algorithm has been 

proposed. The numerical results have verified the 

efficiency of NS-NMSA in finding optimal solutions with 

smaller computational cost. The statistical rankings 

confirmed that the NS-NMSA was practically 

competitive and superior to a number of direct search 

methods reported in the literature.  
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