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ABSTRACT: A modified variant of artificial bee colony (ABC) algorithms, called radial artificial 

bee colony (RABC) algorithm, was proposed. This modified method incorporated two novel strategies 

during the initialization of employed bees and the determination of new locations for scout bees. 

RABC was applied to solve well-known constrained and unconstrained problems. The statistical 

results of RABC were compared with those of the original ABC and a number of approaches from the 

past studies. The comparisons revealed that RABC was superior to its competitor in terms of accuracy, 

speed of convergence and consistency. 
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INTRODUCTION 

 In most of the applications, in general, an 

optimization problem is described as 

MandxxfMinimize d   1;)(  

 Such that  

pixhi  1,0)(  

qjxg j  1,0)(
 

Where f , ih  and jg are real valued functions defined 

on
d  (Yang and Gandomi, 2012). 

 In this problem, dxxxx ,...,,, 321 are called 

design variables, the functions f  are considered as cost 

functions or objective functions, jg  and if  are known 

as problem constraints and the space that is spanned by 

the design variables is known as search space or design 

space (Yang and Gandomi, 2012). The objective function 

can also be formulated as a maximization problem and 

the inequalities can also be expressed as greater than or 

equal to form (Tabassum et al., 2015, 2016). 

 Since the inclusion of algorithms like simulated 

annealing algorithm (SAA) and genetic algorithm (GA), 

the adaptations of diverse natural phenomena is an active 

and effective source of developing potential and efficient 

optimization techniques (Goldberg, 1989; Kirkpatrick et 

al., 1983). Particle swarm optimization (PSO) algorithm 

is based on the concept of swarm behaviors (Kennedy 

and Eberhart, 1995). Some examples of PSO-type 

algorithms are bats algorithm (BA), firefly algorithm 

(FA), artificial bee colony (ABC) and krill herds (KH) 

(Gandomi and Alavi, 2012; Karaboga and Akay, 2011; 

Yang, 2010; Yang, 2010). The comparisons indicate that 

ABC gives better performance than PSO, DE and EA and 

can effectively be employed for solving engineering 

problems (Singh, 2009; Karaboga and Basturk, 2008). 

Similarly, differential evolution (DE) algorithm is based 

on the idea of improvement of the quality of a member of 

the population having social differences with other 

individuals (Storn and Price, 1997). Mine blast algorithm 

(MBA) and grenade explosion method (GEM) are 

inspired from the explosions of grenades and mines, 

respectively (Sadollah et al., 2013; Ahrari and Atai, 

2010).  

 Bee colony optimization algorithm (BCOA) is 

proposed for the solution of numerical problems like 

traveling salesman, traffic and transportation problems 

(Teodorovic and Orco, 2005). Encouraging results in 

complex engineering problems by using BCOA have 

been reported (Teodorovic, 2003). Yang suggested virtual 

bee algorithm (VBA) and proved its performance for the 

solution of numerical problems with two-dimension 

(Yang, 2005). BA faces a severe drawback of optimal 

setting of a number of its parameters before (Pham, 

2006). 

 One of the serious drawbacks of ABC is an 

insufficiency concerning its search equation, which is 

sufficiently good during exploration of the search space 

but comparatively poor at exploitation process (Wei-feng 

et al., 2013). To address such shortcomings of ABC some 

useful modifications are available from the past studies.  

Wei-feng et al have proposed an improved variant of 

ABC based on an orthogonal learning (OL) strategy 

(Wei-feng et al., 2013). To improve the convergence rate 

of ABC a global-best artificial bee colony (GABC) is 

presented (Zhu and Kwong, 2010). Getting inspired by 

DE, the modified ABC/Best/1 and ABC/Rand/1 are 
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employed to perform local searches (Gao and Liu, 2012). 

The concepts of the so-far-best information, inertial 

weight, and acceleration coefficient have been employed 

in the form of IABC (Improved Artificial Bee Colony) 

(Li et al. 2012). The idea of rosenbrock’s rotational 

method has been hybridized with ABC in (Kang et al., 

2011). In the onlooker bee phase, a memory board based 

mechanism for selection of neighbouring solutions has 

been proposed (Mustafa and Ahmet, 2014).  

 Unfortunately, the past modifications are not 

very specific to improve the two very important 

components of ABC, namely the initialization phase and 

the scout-bees phase. For improving the initialization 

process and the scout-bees phase the concepts of 

reflection and effective radius are incorporated 

respectively. The resulting method is named as radial 

artificial bee colony algorithm (RABC). The main 

objective of the present work is to evolve a better and 

more effective variant of ABC by improving these two 

mentioned components. 

MARTIALS AND METHODS 

Artificial bee colony algorithm: Phases of ABC were 

conducted as following (Karaboga and Akay, 2011). 

Initialization phase: This phase was supposed to begin 

with a user defined population size which could be varied 

from problem to problem. Half of the population 

comprised of employed bees and rest of them were 

considered as onlooker bees. Each randomly generated 

location described a food source assigned to an employed 

bee and was produced by using following equation. 

 minmaxmin

, jjjji xxxx     

i=1, 2,…, N and  j=1, 2, …, D 

here xi,j represented the j
th

 dimension or parameter of the 

i
th

 food source or an employed bee, 
max

jx and
min

jx were 

the bounds on the j
th

 parameters, respectively,   was a 

randomly selected number between 0 and 1, N 

represented the employed bees count and D was the 

dimensionality of the problem to be optimized. 

Moreover, in this phase, the resetting of the parameter 

abandonment counter (AC) for each food source also 

took place.  Thereafter, the following formula was used 

to calculate the fitness of each food source. 














otherwise)f(abs1

)0f(if
f1

1

fit

i

i

ii

 (1) 

 Where fiti denoted the fitness of i
th

 employed bee 

at its relevant food source and fi was the objective 

function value of i
th

 food source. 

Employed bee phase:  In this phase, each food source 

was improved by waggle dance of corresponding 

employed bee by using following equation: 

 
jkjijiji xxxv ,,,,     i, k ϵ 1,2,…,N, j ϵ 1,2,…,D

 and i ≠ k 

Here vi,j was the j
th

 component of i
th 

solution vector, xi,j 

was j
th

 component of i
th

 food source, xk,j was j
th

 

component of k
th

 food source and   acted as a randomly 

selected number between −1 and +1. Moreover, the 

component (j) and the neighboring candidate solution (k) 

were selected randomly from the remaining members of 

the population. 

Using equation (1) the fitness of new location vi,j was 

found and was assigned xi,j , provided the fitness of new 

source was high. The value of AC was reset to zero in 

case of success and was increased by 1 in case of failure. 

Onlooker bee phase: In this phase, the waggle dance of 

employed bees helped onlookers to get aware of the 

better positions. Then the onlooker bees were designated 

to the food sources depending on its probability (pi) of 

selection calculated by following equation: 

 


N

1j j

i
i

fit

fit
p

 
 Afterwards, the onlooker bees aimed to seek 

improvement in the assigned food sources shared by 

employed bees using waggle dance equation again. If the 

solution gained by onlooker bee was better than that of 

the employed bee, the newly found better solution of the 

onlooker phase was memorized to employed bee and AC 

was reset. 

Scout bee phase: In this phase, the abandon counter with 

maximum content was matched with pre-defined limit 

value. If value of AC having maximum content was 

greater than the limit value, the corresponding employed 

bee was converted to a scout bee and a new food source 

was generated randomly. The AC was reset. After 

generating new solution for itself, the scout bee returned 

to instatement as employed bee. 

Proposed Modifications: In original format of ABC, a 

random search was made in the search space for selection 

of food sources. But, this technique of initialization did 

not grantee the proper exploration of the search space. To 

respond this challenge the algorithmic alteration as per 

modification # 1 for initialization of N food sources in the 

search space was presented. 

Modification # 1: 

step-1      i=1 

step-2     for j= 1,2,3…,N/2 

          xi = L + rand(0,1)(U-L) 

     xi+1 = xi + 2((L+U)/2-xi); 

step-3     i = i+ 2, go to step-4 

step-4     if i<=N go to step-2 else stop  
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 The third line of step-2 performed the function 

of reflection about the center of the search space which 

did not permit a solution and its reflected point to take 

place in the same sub region of search space. 

Modification 2: Second modification dealt with the 

determination of appropriate position for a scout bee 

whose budget of waggle dance was exhausted. For the 

said employed bee, a scout bee explored the search space 

while capturing a new position calculated equation 2. 

 

 
Fig.1: N initial locations are distributed randomly in 2-dimensional search space 

 

xnew = x
b
 + Rad × rand(-1,1) (2) 

Here  niuxlxRad i

b

ii

b

i  1:,max (3) 

 Further rand (-1,1) denotes a vector of random 

numbers produced in the interval (-1, 1). 

 Due to impact of eqn.(6), each scout bee was 

launched in a radius calculated by equation 3 around the 

current best solution in a random direction. RABC 

algorithm was evolved by embedding modifications 1 

and 2 into the original ABC. The complete RABC 

algorithm was stated as under. 

RABC Algorithm 

Step 1: Parameters were selected. 

Step 2: Initialize population was generated by using 

modification # 1 

Step 3: Employed Bees Phase was activated. 

Step 4: Onlooker Bees phase was executed. 

Step 5: Parameter AC was checked and scout bees were 

launched using modification #2.  

RESULTS AND DISCUSSION 

Un-constrained benchmark test functions: The 

unconstrained optimization problems considered for 

comparison involved Griewank’s function (f1), 

Rastrigin’s function (f2), Rosenbrock function (f3), 

Ackley function (f4) and Schwefel’s function (f5) with 

search domains [−600, 600], [−15, 15], [−15, 15], 

[−32.768, 32.768] and [−500, 500] respectively. All the 

benchmarks had a global minimum value of 0. 
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The problems f1 – f5 were solved by vortex 

search (VS) algorithm, GA, PSO, PS-EA and ABC 

algorithms (B. Dog˘an and T. Ölmez, 2015; Karaboga 

and Akay, 2011; Srinivasan and Seow, 2003).  

The results, presented in Table 8, were directly 

extracted from the respective references of the 

algorithms. For 10 and 20-dimensional f1 function, 

RABC produced the best results in comparison with those 

of GA, PSO, PS-EA and PSO whereas on its 30-

dimensional case only ABC was little better. The mean 

best values found by VS and an orthogonal learning 

based global best artificial bee colony (OGABC) were 

0.032798017 and 9.85E-04 respectively (B. Dog˘an and 

T. Ölmez, 2015; Gao et al, 2013). The results of RABC 

were better than these results. From table 8 it could be 

noticed that RABC outperformed the algorithms GA, 
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PSO and PS-EA on all the test problems for dimension 

10, 20 and 30.  

 For 30-dimensional f2 function, the mean best 

values found by RABC was 4.14e-13 which was better 

than the mean best values 8.50E-13, 1.26E-11 found by 

ABC and OGABC respectively (Gao et al, 2013; 

Karaboga and Akay, 2011). Similarly, for rosenbrock 

function (f3), RABC stood 1
st
 for dimension 10 and 30 

and also found comparable mean solution to that of ABC. 

The final mean best solution found by RABC for f3 was 

also better than those of references (B. Dog˘an and T. 

Ölmez, 2015; Gao et al, 2013; Srinivasan and Seow, 

2003). 

Table 1: Results obtained by GA, PSO, PS-EA, ABC and RABC Algorithms. 

 

Algorithm GA PSO PS-EA ABC RABC 

Function Dim Mean SD Mean SD Mean SD Mean SD Mean SD 

Griewank 

10 0.050228 0.029523 0.079393 0.033451 0.22236 0.0781 0.001634 0.003939 0.000251 0.001373 

20 1.0139 0.026966 0.030565 0.025419 0.59036 0.2030 0.000412 0.002255 1.38e-10 6.98e-10 

30 1.2342 0.11045 0.011151 0.014209 0.8211 0.1394 0.000493 0.002696 0.000829 0.002564 

Rastrigin 

10 1.3928 0.76319 2.6559 1.3896 0.43404 0.2551 0 0 0 0 

20 6.0309 1.4537 12.059 3.3216 1.8135 0.2551 1.8e-014 2.29e-14 2.65e-14 2.68e-14 

30 10.4388 2.6386 32.476 6.9521 3.0527 0.9985 8.50e-13 1.84e-12 4.14e-13 4.31e-13 

Rosenbrock 

10 46.3184 33.8217 4.3713 2.3811 25.303 29.7964 0.06202 0.070766 0.024981 0.022851 

20 103.93 29.505 77.382 94.901 72.452 27.3441 0.038573 0.040478 0.080213 0.14019 

30 166.283 59.5102 402.54 633.65 98.407 35.5791 0.15941 0.26833 0.10659 0.15093 

Ackley 

10 0.59267 0.22482 9.84e-13 9.62e-13 0.19209 0.1951 7.99e-15 1.86e-15 8.23e-15 1.59e-15 

20 0.92413 0.22599 1.177e-6 1.584e-6 0.32321 0.097353 3.22e-14 4.38e-15 2.99e-14 4.57e-15 

30 1.0989 0.24956 1.491e-6 1.861e-6 0.3771 0.098762 4.17e-13 1.77e-13 4.38e-13 2.09e-13 

Schwefel 

10 1.9519 1.3044 161.87 144.16 0.32037 1.6185 -4189.82 2.35e-12 -4189.82 2.56e-12 

20 7.285 2.9971 543.07 360.22 1.4984 0.84612 -8379.65 6.307e-5 -8379.65 2.47e-10 

30 13.5346 4.9534 990.77 581.14 3.272 1.6185 -12557.5 36.1145 -12541.6 58.6867 

 

 On Ackley function, the mean solution attained 

by RABC for dimension 20 was the best of all its 

competitors whereas the mean solutions for dimension 10 

and 30 were very close to those of ABC but surely better 

than all the remaining algorithms. On Schwefel function, 

the mean best solution of RABC was better than those of 

its competitors for dimension 10 and 20 but was little 

worse for dimension 30. As an overall remark, we 

concluded that in most of the cases RABC was superior 

to its competitors.  

Engineering design constrained problems 

Pressure vessel optimum design problem: The pressure 

vessel optimum design problem involved the 

minimization of the entire cost that comprised of the 

material cost, welding and forming costs (Kannan and 

Kramer, 1994). The geometry of the problem was 

presented in figure 2. The mathematical model was of the 

form: 

Minimize

 

  2

32

2

13

2

14341 7781.184.191661.36224.0 xxxxxxxxxxf 

Subject to 00193.0)( 131  xxxg  

000954.0)( 232  xxxg
  

0
3

4
1296000)( 4

2

3

3

33  xxxxg 
  

0240)( 44  xxg
  

]100,0[, 21 xx
; 

]200,10[, 43 xx
  

 Table 2 witnessed that RABC outperformed the 

results of a number of past approaches (Coello, 2000; 

Coello and Montes, 2002; Parsopoulos and Vrahatis, 

2005; Mezura and Coello, 2005; Akay and Karaboga, 

2010). Their optimization results (statistical results) were 

taken from their respective references. RABC found the 

smallest optimum value which was much better than each 

of Ndirituand Daniell, Wu and Chow, Sandgren, Fu and 

Khalil. 
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Table 2: Comparison of results for pressure vessel problem. 

 

D.V Ndirituand Daniell Wu and Chow Sandgren Fu Khalil ABC RABC 

x1 1.125 1.125 1.125 1.125 1.125 1.1418 1.125 

x2 0.625 0.625 0.625 0.625 0.625 0.625 0.625 

x3 58.2209 58.1978 48.97 48.3807 58.2367 58.6513 58.2902 

x4 44.086 44.2930 106.72 111.7449 44.0247 41.7345 43.6925 

g1(x) -0.00133663 -0.00178246 -0.179879 -0.19125249 -0.00103169 -0.00982991 -8.6e-007 

g2(x) -0.069572614 -0.069792988 -0.1578262 -0.163448122 -0.069421882 -0.065466598 -0.068911492 

g3(x) -127.6084334 -974.1573 97.9031762 -72.9716183 -402.51442 -150.89312 -0.94789 

f(x) 7202.517 7207.497 7982.5 8048.619 7204.32 7197.9114 7197.7299 

 

 
Fig. 2: Geometry of pressure vessel. 

Figure 3 presented the iterative convergence curve of the so far best function values for the pressure vessel problem. 

  
Fig. 3. RABC convergence progress for the pressure vessel optimum design problem. 

Welded beam optimum design problem: Welded beam 

problem was developed by Coello (Coello, 2000). This 

problem involved four design variables h(x1), l(x2), t(x3), 

and b(x4) as given in Fig. 4. The mathematical model was 

presented as following: 

Minimize 
2
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P=6000 lb, L=14 in, E=30000000 psi,

 G=12000000psi, τmax= 13600 psi, σ max=30,000 

psi, δmax= 0.25 in 

 The optimization methods which have been 

earlier applied to this problem include GA4, CAEP, 

CPSO, HPSO, HGA, (Mezura and Coello, 2006) and 

ABC. The best solutions achieved by different algorithms 

were presented in Table 3. 

Table 3: Comparison of result for welded beam problem. 

 

D.V HGA GA4 CAEP HPSO CPSO ABC RABC 

x1 0.2057 0.205986 0.205700 0.20573 0.202369 0.2955 0.20583 

x2 3.4705 3.471328 3.470500 3.470489 3.544214 2.4168 3.4679 

x3 9.0366 9.020224 9.036600 9.036624 9.048210 8.2386 9.0377 

x4 0.2057 0.206480 0.205700 0.20573 0.205723 0.29592 0.20583 

g1 1.988676 −0.103049 1.988676 −0.025399 −13.655547 -4.693309 -4.6933098 

g2 4.481548 −0.231747 4.481548 −0.053122 −78.814077 -4907.18509 -4907.18509 

g3 0 −0.0005 0 0 −0.00335 -0.00042 -0.000420 

g4 −3.433213 −3.430044 −3.433213 −3.432981 −3.424572 -0.2367340 -10771.560 

g5 −0.080700 −0.080986 −0.080700 −0.08073 −0.077369 -10.771560 -3.0653212 

g6 −0.235538 −0.235514 −0.235538 −0.235540 −0.235595 -3.065322 -0.1705 

g7 2.603347 −58.646888 2.603347 −0.031555 −4.472858 -0.1705 -0.236735 

f(x) 1.725852 1.728226 1.724952 1.7249 1.728024 1.7673 1.7249 

 

 Table 3 validated that the objective function 

value found by RABC was better than that of each of 

GA4, HGA, CPSO, CAEP, and original ABC and little 

higher the HPSO.  

 All the constraints were satisfied in RABC, 

ABC, HPSO, CPSO and GA4. However the solutions 

found by HGA and CAEP were infeasible. The results of 

all the competing algorithms were extracted from the 

reference concerning to Mine Blast Algorithm (MBA) 

(Sadollah et al, 2013). 

 
Fig. 4. Welded Beam Design Problem. 

 

Table4: Comparison of results for the welded beam problem taken from literature. 

 

Method Worst Mean Best SD 

GA4 1.993408 1.792654 1.728226 0.0747 

CAEP 3.179709 1.971809 1.724852 0.443 

CPSO 1.782143 1.748831 1.728024 0.0129 

HPSO 1.814295 1.749040 1.724852 0.0401 

HGA 1.824105 1.768158 1.733461 0.0221 

ABC 2.0706 1.8781 1.7673 0.073555 

RABC 1.7277 1.7254 1.7249 0.00063131 
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 From table 4 one could conclude that the best 

solution of f(x) = 1.7249 attained by RABC was better 

than all the remaining algorithms.  

 

  
Fig. 5. Convergence curve of RABC for the welded beam problem. 

 

 Fig. 5 showed the convergence progress of 

RABC on welded beam optimum design problem.  

Speed reducer optimum design problem: Speed 

reducer design problem was designed for minimization of 

the weight of speed reducer under the constraints on 

bending stresses of the surface, gear teeth and shafts 

along with their transverse deflections (Akay and 

Karaboga, 2010). Figure 6 showed the geometry and all 

the design variables of the problem. There were 11 

constraints due to which problem became highly complex 

(Kuang et al., 1998). Mathematical form of the problem 

was as given below. 
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Where 

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,  5.0 ≤ x7 ≤ 5.5 

 

 
Fig. 6. Speed reducer design problem. 

 

 The comparison with earlier methods regarding 

best solution for this problem was given in Table 5. The 

computed results of RABC were compared with those of 

the methods including DELC, PSO-DE, DEDS, ABC, 

HEAA and a modified differential evolution (MDE). 

Tables 5 and 6 showed the comparisons. 

 This table5 reveals that the value of objective 

function of RABC is better than the DEDS, DELC, 

HEAA, MDE, ABC and little higher the PSO-DE. 

 From table 6 it was evident that the best function 

value of f(x) = 2994.4701 with very small standard 

deviation of 1.1198E-11 found by RABC was better than 

its competitors. The small deviation expressed that 

RABC was highly consistent. Fig. 7 displayed the 

function values versus the number of iterations for the 

welded beam design problem. 
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Table 5: Comparison of the best results for speed reducer optimum design problem obtained from various 

previous studies. 

 

D.V DEDS PSO-DE DELC ABC HEAA MDE RABC 

x1 3.5E+09 3.5000000 3.5E+09 3.5 3.500022 3.500010 3.50008 

x2 0.7E+09 0.700000 0.7 E+09 0.7 0.70000039 0.70000 0.7 

x3 17 17.000000 17 17 17.000012 17 17 

x4 7.3E+09 7.300000 7.3 E+09 7.3 7.300427 7.300156 7.3 

x5 7.715319 7.800000 7.715319 7.71532 7.715377 7.800027 7.71533 

x6 3.350214 3.350214 3.350214 3.35021 3.350230 3.350221 3.35021 

x7 5.286654 5.2866832 5.286654 5.28665 5.286663 5.286685 5.28665 

f(x) 2994.471066 2996.348167 2994.481066 2994.4711 2994.499107 2996.556689 2994.4701 

 

Table 6: Comparison of statistical results given by different methods for speed reducer design problem. 

 

Method Best Mean Worst SD 

PSO-DE 2996.348167 2996.348174 2996.348204 6.4E−12 

DELC 2994.481066 2994.471066 2994.471066 1.9E−11 

DEDS 2994.471066 2994.471066 2994.471066 3.6E−11 

HEAA 2994.499107 2994.613368 2994.752311 7.0E−02 

MDE 2996.556689 2996.367220 N.A 8.2E−03 

ABC 2994.4711 2994.4738 2994.5009 0.00843 

RABC 2994.4701 2994.4711 2994.4711 1.1198E-11 

 

  
Fig. 7. Function values versus number of iterations for the speed reducer problem. 

 

Conclusion: Numerical comparisons of the study have 

witnessed that the RABC found better solution to the 

unconstrained as well as constrained optimization 

problems in comparison with other meta-heuristic 

optimizers. However, its efficiency and quality of 

solutions was dependent on the complexity and nature of 

the test problem.  
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