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ABSTRACT: Knowledge to execute wild conceptual mathematical computations helped immensely 

even out of the park. Knowing these quick calculations has been of great interest ever since. Divisibility 

tests were required to know whether a number (large enough) was divisible by a given integer or not? Let 

0,m  and a be any integer. The symbol,  mod ,a m  was used to represent the residue when a was 

divided by m . In this piece of treatised work, modulo residue theory was employed to find tests of 

divisibilty for even numbers < 60 and elaborated the use of modular arithmetic from number theory in 

finding different tests of divisibility. Particularly, b adic expension of an integer N and its congruence 

modulo b was used to characterise a given integer regarding its divisibility rule. One of the 

characterisations was stated and proved that an integer N was divisible by 40 if and only if

0 1 210( 2 )a a a 
was divisible by 40, where 0 1 2, ,a a a

were the digits of N in its decimal representation. 

Finally, the framework proposed reduced the pitfalls by demonstating each established rule with the help 

of their recursive applications on large integers. 
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INTRODUCTION 

 In a study (Gauss, 1966) reports that congruences 

are useful to find the divisibility by different integers. The 

work of (Gardner, 1991) formaly raises the importance of 

divisibility rules. The study of (Leonardo and Sigler, 

2003) extends the notion given by (Gauss, 1966) and 

establishes tests of divisibility for 7, 9 and 11. 

Furthermore, (Mangho, and Bruening, 1999) presents a 

brief survey on divisibility with historical prospects. 

Particularly, discussing the rules for few prime numbers 

given earlier by (Eisenberg, 2000 and Hatch, 2001) who 

offered divisibility rules using integer seven and other low 

value primes and their use as generators of simple proofs. 

Some of the divisibility rules by primes from the history of 

numbers are given by (Nahir, 2003 and Dickson, 2005). 

Whereas in another study, (Nahir, 2008) emphasises the 

importace of divisibility and proposes an efficient 

procedure for certain rules on divisibility. The work of 

(Chauthaiwale 2012) extends the concept of osculators 

and osculation methods on numbers ending at some fixed 

integers for finding more on divisibility. A fast integer 

factoring algorithms is proposed by (Aldrin et al, 2013). 

The following discussion employs modulo residue theory 

to find tests of divisibilty for even numbers <60 and 

elaborates the use of modular arithmetic from number 

theory in finding these tests. 

 It is evident that the problem of finding the 

divisibility by a given number with sagacious amount of 

time is out of the way. However, the use of congruences 

plays a significant role in reducing the effort (Andersen 

and Jenkins, 2013). According to the proposed view 

point, teaching basic mathematics with the understanding 

of modern algebras sent behind by excessive use of 

calculators and computers. Due to this unjust treatment to 

elementary mathematics, students are becoming informal 

with poor knowledge of elementary mathematics. Most of 

the teachers are unable to compute directly whether a 

long digit number is divisible by a given number or not? 

Even they do not have the knowledge to build such tests 

except very few who are interested to learn about 

modular arithmetic and number theory (Aldrin et al, 

2013). This survey is for those school teachers and 

students who are interested in finding out the numbers of 

theoretic rules for routine calculations without using 

computers. Primary focus is to learn about modular 

arithmetic in the form of congruence. Solving congruence 

is of great interest in number theory and an independent 

subject of mathematics based on divisibility. Divisibility 

rules play an integral role in the factorization of large 

integers (Young and Mills, 2012). The factorization 

problem is important for estimating the speed of an 

integral based algorithm. Thus, divisibility rules are 

precious to expedite the speed of an algorithm, based on 

integral mathematics. 

 Its is worth noticing that integers have been in 
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use with different radix in different cultures. Although, the 

common radix in use is base 10 but actually a number can 

be interpreted in any base. This notion helps to express 

that each integer can be represented in terms of a 

polynomial with some arbitrary base. The relationship of 

that base with the divisor plays a crucial role in most of the 

number theory problems (David, 2007). This work focuses 

on establishing a generalized relationship between the 

base and the divisor for any arbitrary base, such that this 

relationship will be helpful in determining the new rules 

which are further exploited to reduce complexity and form 

easy computational methodologies. Researchers in the 

past focused on such rules using prime numbers whereas 

this study focuses on establishing rules corresponding to 

an arbitrary running composite divisor directly. 

MATERIAL AND METHODS 

 The significant algebraic examples of the finite 

Fields and finite Groups were based on the ubiquitous 

concept of divisibility. Modular arithmetic was employed 

to study divisibility rules. Although, modulo arithmetic 

was developed by researchers and mathematicians in an 

age when its use could not be materialized or 

conceptualized. History showed that prime numbers were 

understood since ancient times but there was no practical 

use of such numbers. The advent of information theory has 

shown that indeed all these discoveries were not in vain. 

Several problems related to information coding, error 

detection and correction encryption and information 

analysis required the use of prime numbers, modulo 

arithmetic and congruences. Particularly, congruence 

relation was used on integers to find direct rules free from 

factors of given integers.  

 Rather than decomposing a divisor into prime 

factors and then finding divisibility relationship it was 

more efficient to find divisibility for a given number. The 

following results given in (Thomas, 2007 and David, 

2005) are used in sequel. 

Theorem 2.1 Let b  be an integer 2.  Then every 

positive integer N  could be expressed uniquely in the 

form given below  

01

1

1 ...= abababaN k

k

k

k  

  

where, kaaa ,...,, 10  were nonnegative integers less than 

0, kab
 and 0k . 

 This was further written as 

1 1 0= ( ... )k k bN a a a a , where the right side was the 

symbolic form of the representation and would not be 

interpreted as the usual product of integrs. This was called 

-b adic expension of .N  

 Most of the manipulation that was performed 

with equality was also performed on congruence modulo 

.m  In particular, congruence satisfied the following 

fundamental postulates, which were familiar and 

important. 

Theorem 2.2 For all integers 
, , , , 0a b c d n 

 and 

0m  : 

(1) 
 (mod )a a m

. 

(2) If 
 (mod )a b m

 then
 (mod )b a m

. 

(3) If 
 (mod )a b m

 and 
 (mod )b c m

 then

 (mod )a c m
. 

(4) If 
 (mod )a b m

 and 
 (mod )c d m

then

 (mod )a c b d m  
. 

(5) If 
 (mod )a b m

 and 
 (mod )c d m

then

 (mod )ac bd m
. 

(6) If 
( )f x

 was a polynomial with integer coefficients 

and
 (mod )a b m

, then ( ) ( ) (mod )f a f b m . 

(7) Suppose |d m  and 0d  . If 
 (mod )a b m

 then 

 (mod d)a b
. 

(8) If 1 (mod )a b m
 and 2 (mod )a b m

then 

 (mod ),a b L where L  was the least common multiple 

of 1m
 and 2m

. 

(9) If 
 (mod )ca cb m

 and 
( , ) ,c m d

 then 

 (mod ),a b t
where .m td  

Theorem 2.3 Let 0m   be any integer. Then, 

(i) If 
0 (mod  )ax by m 

and m  divides 

a  then m  divided .b  

(ii) If  (mod  )a b m then
 (mod  )k ka b m

. 

(iii) The linear congruence 
 (mod  )ax b m

had a 

unique solution 

if and only if ( , ) 1.a m   

Let 01

1

1 10...1010 aaaa k

k

k

k  

  be the decimal 

expansion of the positive integer N  where 

kaaa ,...,, 10  were nonnegative integers less than 10  

such that 
0ka

 and 0k . The decimal 

representation given above was used to give the  the 

following divisibility rules with straight forward proofs. 

Divisibility by 22: An integer N was divisible by 22 if 
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and only if
i

ik

i
a

a
1)(6

2 1=

0  
was divisible by 11.   

Let 

i

i

k

i

aN 10=
0=


, (1) 

Using Theorems 2.1 and 2.2, the result was 

10 12( 1)  (m  22) f  1,  then by equation (1),i i od or i    

22) m( 1)(12
1=

0 odaaN i

i
k

i

 
 

Then by definition of congruence, 22 divided 

0

=1

12 ( 1)
k

i

i

i

N a a  
 

Thus by Theorem 2.3(i), it was 

0

=1

22 |  if and only 22 | 12 ( 1)
k

i

i

i

N a a 
 

and hence  

0

=1

22 |  if and only 11| 6 ( 1)
2

k
i

i

i

a
N a 

 

Divisibility by 24: An integer N  was divisible by 24 if 

and only if i

k

i
aaaa 

2=210 16410
 was divisible by 

24. 

Since  

 4 (mod 24)  f   = 2
10

16 (mod 24)  f   3

i
or i

or i


 

  
Then by using (1), it resulted as below  

0 1 2

=2

10 4 16  (mod 24)
k

i

i

N a a a a    
 

Hence  

0 1 2

=2

24 |  if and only 24 | 10 4 16
k

i

i

N a a a a   
 

Divisibility by 30: An integer N  was divisible by 30 if 

and only if 
i

k

i
aa 

1=0 10
 was divisible by 30. 

Since  

10 (mod 40) f   = 1

10 20 (mod 40) f   = 2

 0 (mod 40) f   3

i

or i

or i

or i




 
   

Then by (1), it yielded as  

0 1 210 20  (mod 40)N a a a  
 

Hence  

0 1 240 |  if and only 40 | 10 20N a a a 
 

Divisibility by 36, 40, 60: The following rules were 

obtained in a similar fashion as explained above. 

(i) N  was divisible by 36 if and only if 

i

k

i
aaa 

2=10 810
 was divisible by 36. 

(ii) N  was divisible by 40 if and only if 

210 2010 aaa 
 was divisible by 40. 

(iii) N  was divisible by 60 if and only if 

i

k

i
aaa 

1=10 4010
 was divisible by 60. 

The following corollary was an immediate consequence of 

divisibility by 60. 

Corollary :  If 
N|60

 then 
0 =1

6 | 4
k

ii
a a 

 

The proof of above corollary was analogous. However its 

converse was not asserted and in fact it was not true in 

general. For this the following counter example can be 

given. 

Example: Let 3419247360=N  then N  was 

divisible by 60.  

Note that,
120=60600=2010 210  aaa

which was divisible by 60. Then by above corollary,

0

=1

4 = 0 4(33) =132
k

i

i

a a 
was divisible by 6. But 

if = 3348N  then 60 does not divide 3368  even 

though 
0 =1

6 | 4 = 48
k

ii
a a 

. 

Instead of using decimal representation to the base 10, the 

decimal representation to the base 100 was used. Thus, it 

was useful to find an appropriate divisiblity relation of the 

given integer by 100 in place of 10. Then using [1-3], 

divisibility rules were established as under: 

Divisibility by 22:  An integer N was divisible by 24 if 

and only if
iii

aaaa 2121=01 16 
was divisible by 24. 

Let  

...)(1010= 22

45

2

2301  aaaaaaN
 

i

ii aa )(10= 2

212   (2) 

be the expansion of the positive integer N , where 

,..., 10 aa
 were non-negative integers less than 100 . 

Then, it was easy to establish that  

2

 4 (mod 32) f   = 1

(10 ) 16 (mod 32) f   = 2

 0 (mod 32) f   3

i

or i

or i

or i




 
   

Then by equation (2), it yielded  

1 0 3 2 5 44 16  (mod 32)N a a a a a a  
 

Hence, 
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1 0 3 2 5 432 |  if and only 32 | 4 16N a a a a a a 
 

Divisibility by 44, 48: An integer N  was divisible by 44 

if and only if 
1 0 2 1 212 i ii

a a a a 
 was divisible by 44 

and 48 if and only if 
iii

aaaaaa 2122=2301 164 
 

was divisible by 48. 

It was easy to see that,  
2(10 ) 12 (mod 44) f  1, s   (2),i or i o by 

 

1 0 2 1 2

=1

12  (mod 44)i i

i

N a a a a  
 

Hence,  

1 0 2 1 2

=1

44 |  if and only 44 | 12 i i

i

N a a a a 
 

Also 

2
 4 (mod 48)  f   =1

(10 )
16 (mod 48)  f   2

i
or i

or i


 

  
Then by (2), it was easy to see that  

1 0 3 2 2 1 2

=2

48 |  if and only 48 | 4 16 i i

i

N a a a a a a  
 

Divisibility by 32:  An integer N  was divisible by 32 if 

and only if 452301 164 aaaaaa 
 was divisible by 32. 

Notation: Consider a digit sum of the type 

...10118967452301  aaaaaaaaaaaa 

. Further, this sum using the following notation would be 

represented as:  

 

...= 10118967452301))()((
 aaaaaaaaaaaaS 



122))()((=  ii

i

aa
 (3) 

Let ))()(( 
S

 be the sum of the digits of N  defined in 

(3). Then, 

(i) N  was divisible by 26 if and only if 

1 0 2 2 1=1
( 4)(16)(14) i ii

a a a a  
 was divisible by 

26. 

(ii) N  was divisible by 28 if and only if 

1221=01  8) 4)( (16)(  iii
aaaa

 was divisible by 28. 

(iii) N  was divisible by 52 if and only if 

1 0 2 2 1=1
( 4)(16)( 12) i ii

a a a a   
 was divisible by 

52. 

(iv) N  was divisible by 54 if and only if 

1 0 2 2 1=1
( 8)(10)( 26) i ii

a a a a   
 was divisible by 

54. 

(i) Since  

2

4(mod 26) f   = 1

16 (mod 26) f   = 2

14 (mod 26) f   = 3

4(mod 26) f   = 4

16 (mod 26) f   = 5
(10 )

14 (mod 26) f   = 6

.

.

.

i

or i

or i

or i

or i

or i

or i









 






  

Thus for any natural number n ,  

2

4(mod 26) f   = 3 2

16 (mod 26) f   = 3 1
(10 )

14 (mod 26) f   = 3

i

or i n

or i n

or i n

 



 

  

Then by (2),  

 

1 0 3 2 5 4 7 6 9 8 11 10 13 124 16 14 4 16 14 ... (mod 26)N a a a a a a a a a a a a a a       

Hence by (3),  

1 0 2 2 1

=1

( 4)(16)(14)  (mod 26)i i

i

N a a a a   
 

This implied that  

1 0 2 2 1

=1

26 |  if and only if  26 | ( 4)(16)(14) i i

i

N a a a a  

 The rest of the rules were justified by a similar 

technique.  

RESULTS AND DISCUSSION 

The canonical representation of a composite number was 

written after finding the exponent of its prime factors. It 

has always been a matter of great concern whether a given 

number was a factor of a large integer or not? Divisibility 

rules played an important role in finding these factors. In 

this study, a decipherable introduction to modular 
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arithmetic was given and explained thoroughly. The 

topographies regarding direct rules by composite numbers 

were established. While in the previous studies conducted 

by (Mangho and Bruening, 1999, Nahir, 2008 and Aldrin 

et al 2013), the rules regarding primes and few 

factorization techniques were explored. The comparisons 

of proposed and old rules are summarized in Table-1.  

This study extended the notion given by (Nahir, 2008), 

who tried to rectify the situation by presenting several 

different methods for framing rules of divisibility. Some 

of the methods presented were known but not well-known, 

while others were completely new; yet all were within the 

grasp of elementary school teachers. The conditions of 

divisors ending with 8, 4, 2, 6 and 5 given by 

(Chauthaiwale, 2012) were relaxed after describing their 

mathematical background. The research of (Eisenberg, 

2000) claimed that a modest group of teachers could not 

recall or describe the criteria for determining when 7 or 

any higher prime was divided by N. It was observed that 

test for divisibility was a crucial topic for any curriculum, 

which seems to have disappeared as most of the teachers 

just had a basic rudimentary knowledge of this topic. The 

proposed mathematical relation to apply tests of 

divisibility were independent of divisors; either low 

valued or high valued whereas, rules presented by 

(Eisenberg, 2000) were for low value divisors. Moreover, 

(Aldrin et al, 2013) discussed certain algorithms that 

factorized large integers. Very few of these algorithms run 

in polynomial time. This fact made them inefficient and 

computationally intensive.  

Table 1: Comperison of Old and New Rules with their Applications 

 

Divisors Examples Proposed Rules Old Rules 

22 1972344 
0

=1

6 ( 1) = 22
2

k
i

i

i

a
a  

 

Divisible by 2 and by 11 

24 136608 

0 1 2

=2

10 4 16 =192 96
k

i

i

a a a a   
 

Divisible by 8 and by 3 

26 109538 
1 0 2 2 1

=1

( 4)(16)(14) = 182 78i i

i

a a a a    
 

Divisible by 2 and by 13 

28 904988 
1 0 2 2 1

=1

(16)( 4)( 8) =1232 224 56i i

i

a a a a   
 

Divisible by 4 and by 7 

30 333180 

0

=1

10 =180 90
k

i

i

a a 
 

Divisible by 2 and by 3 

and by 5 

32 173184 
1 0 3 2 5 44 16 = 480 96a a a a a a  

 
Divisible by 2 and by 16 

36 151560 

0 1

=2

10 8 = 36
k

i

i

a a a  
 

Divisible by 4 and by 9 

40 906080 
0 1 210 20 = 80a a a 

 
Divisible by 8 and by 5 

44 230164 
1 0 2 1 2

=1

12 = 352 88i i

i

a a a a 
 

Divisible by 4 and by 11 

48 251136 
1 0 3 2 2 1 2

=2

4 16 = 480i i

i

a a a a a a  
 

Divisible by 16 and by 3 

52 328692 
1 0 2 2 1

=1

( 4)(16)( 12) = 260 52i i

i

a a a a    
 

Divisible by 4 and by 13 

54 244242 
1 0 2 2 1

=1

( 8)(10)( 26) = 54i i

i

a a a a    
 

Divisible by 2 and by 27 

 

 The visible difficulty in factorization of large 

integers was the foundation of some vital algorithms in 

information theory. The proposed technique endeavored 

algebraic approach in factoring composite integer rather 

than a numerical approach as proposed by (Nahir, 2008, 

Eisenberg, 2000 and Aldrin et al, 2013). This approach 

reduced the number of steps to a finite number of possible 

differences between two primes thus made it possible to 

apply divisibility rules on composite numbers whereas 

(Chauthaiwale, 2012, Eisenberg, 2000 and Aldrin et al, 

2013) discussed prime numbers only. This article 

endeavored to fill in the gap. It discussed an algebraic 
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framework required to develop generalized divisibility 

rules. It extended the comparison list with the addition of 

direct rules by composite numbers <60 and entertained by 

their successive applications. It was emphasized that how 

one could establish a new rule using simple divisibility 

rather to apply a given rule on some integers.  
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