
Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 409

TOWARDS AN EFFICIENT PARALLEL BINARY SEARCH TREE USING LOCK-FREE

INSERTION

A.M. Dogar

and M.A. Khan

*
COMSATS Institute of Information Technology, Sahiwal, Pakistan.

Bahauddin Zakariya University, Multan, Pakistan.

Corresponding author’s email: manan@ciitsahiwal.edu.pk

ABSTRACT: Binary Search Tree (BST) was widely used in a large number of applications in

order to search data in an efficient manner. On the modern multi-core systems, the implementation of

parallel Binary Search Tree (BST) was unable to achieve maximum performance due to a high cost of

locking mechanism, which was inevitable since the deployment of multiple parallel threads require

locks to be implemented. This paper proposed a parallel lock-free BST which allowed for parallel

insertion of data. Our proposed approach used atomic instructions like Compare, Swap, Fetch and Add

to implement mutual exclusion and lock avoidance. The proposed implementation outperformed the

sequential and the existing lock-based parallel binary search tree implementation. The proposed

implementation of the parallel BST was evaluated on different platforms like Intel Xeon and Intel Core

i5 processor based systems. The proposed approach achieved up to 12% performance improvement

over the parallel lock-based implementation.

Keywords: Atomic Instructions, Binary Search Tree, Code Optimization, Lock-free, Tree Insertion.

(Received 16-02-2017 Accepted 21-12-2017)

INTRODUCTION

 Binary Search Tree (BST) is a core data

structure which is used for the management of ordered

data and its manipulation operations (Cormen and Russel,

2009). It uses decrease and conquer technique for

efficient searching because the complexity of search

operation of BSTs is log(n) (Adamchik, 2016; Cormen,

2009; Furajh, 2000) . That’s why it is widely used in

DNA and Protein sequence analysis in bioinformatics

where the searching of data plays a pivotal role.

 To achieve the maximum performance on multi-

core processors, parallel algorithms have become

inevitable to make each core execute different

instructions simultaneously. There are, however,

complexities using a shared memory implementation, as

race for the possession of resources leads to deadlocks

and starvation of resources. To avoid these issues,

parallel algorithms with obstruction-free, lock-free and

wait-free properties are being designed and implemented

(Bahra, 2013).

 Parallel BSTs are implemented on both

distributed and shared memory architectures. The initial

concurrent implementation of BSTs for shared memory

architectures using multiple threads was made in 1995

(Solworth, 1995). Similarly, a parallel implementation of

a BST (Feng, 2011) enhances search efficiency for DNA

sequences. The insertion operation of the parallel BST

incorporates locks which ultimately becomes a bottleneck

on modern multi-core systems.

 In contrast to these approaches, an efficient

implementation of insertion operation for the parallel

BSTs using threads is proposed while avoiding the

above-mentioned locking mechanism. This is

accomplished by incorporating the Compare and Swap

(CAS) and Fetch and Add (FAA) atomic instructions

which can perform two or more operations

simultaneously without using any locking mechanism.

 In general, a BST contains a single root node,

which contains links to left and right sub-trees. After

having created the root node, a lock based parallel

implementation invokes multiple threads for the creation

of sub-trees. Due to multiple threads, the lock-based

implementation uses a locking mechanism to ensure

mutual exclusion while inserting data in sub-trees (Arbel,

2014). Implementation approach for this paper avoids

locking mechanism for insertion that ultimately reduces

the cost of computation. Although the lock-based

algorithms are more efficient as compared to sequential

algorithms, but the locking mechanism is very time

consuming. A lock free BST creation is actually a refined

form of its lock-based counterpart which avoids locking

mechanism by using atomic instructions.

 In parallel algorithms, an algorithm is

obstruction-free algorithm if no process is suspended or

blocked due to any type of obstruction. An algorithm is

wait-free if a process can perform finite number of

operations before its completion, whereas, an algorithm is

called lock-free if there will be no starvation of the

resources (Obstruction Freedom).

mailto:manan@ciitsahiwal.edu.pk

Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 410

 The hardware architecture of new computers

supports atomic instructions which are used to implement

lock free algorithms. The atomic instructions execute

more than one basic operation (read, write, compare and

swap) as a unit while maintaining the mutual exclusion

and controlling the interrupt mechanism (Scogland,

2015).

 __sync_val_compare_and_swap
The instruction __sync_val_compare_swap (David,

2013) executes two operations, compare and swap, in a

single throw. It’s algorithm takes the new input value,

compares it with existing value, and if it matches then

there was no change, otherwise it swaps the existing

value with the new value (Molka, 2014).

 __sync_fetch_and_add
 The instruction __sync_fetch_and_add, is used

to access the operand (data element to be added), and

then to add the fetched value into the existing value.

 (Howley et al, 2012) suggests a concurrent BST

algorithm that builds the tree using single-word reads,

writes, and compare-and-swap. The algorithms given by

(Feng, 2011; Bronson, 2010; Bender, 2005) for BSTs

also supports parallel processing. These algorithms are

much faster than previous non-parallel BSTs. Parallel

operations are done by constructing parallel sub-trees

which were managed by “mutexes”. A shared memory

based asynchronous system for different tree operations

using single-word compare-and-swap operations are

suggested by (Brown, 2014). This linear implementation

makes the tree operations like delete, insert and update to

work on different portions of the tree. An optimized

approach using the concept of transactional memory for

efficient Adelson-Velskii and Landis (AVL) tree

operations is given by (Bahra, 2013). The AVL trees are

a refined form of BSTs with the characteristic of height

balancing. Another approach proposed by (Kung et al,

1980) supports multiple parallel processes which can

execute the operations like search, insert, delete and

rotation on a tree. Using lazy splaying, an implementation

of parallel search trees is suggested by (Afek, 2016). The

suggested approach makes changes in those nodes which

are most commonly accessed without creating any type of

bottleneck at the root level. Similarly, another approach

of concurrent BST suggested by (Arbel, 2014) uses Read-

Copy-Update (RCU) based synchronization mechanism.

The approach however requires fine-grain locks in order

to synchronize concurrent updates.

 In a study (Natarajan, 2014) introduces a lock-

free algorithm, which works by marking edges instead of

nodes. As compared to other lock-free algorithms, their

modification approach for a BST operates on a small

portion of the tree at an instance. Consequently, the

suggested approach is shown to work with reduced

number of conflicts.

 A lock-free algorithm for parallel operations on

a BST using asynchronous shared memory is proposed by

(Ramachandran, 2015). Their algorithm combines the

features of two different approaches for read and write

dominated workloads. Similarly, an algorithm which

changes its contention according to read-write load is

proposed by (Chatterjee, 2014), which uses single-word

CAS operation. In case of read-heavy, concurrent

Remove operations are avoided during traversal, and

adapted to interval contention. For the write-heavy

situations, the algorithm allows for the concurrent

Remove.

 In contrast to these approaches, the suggested

approach makes use of hardware primitives which

supports atomicity of multiple operations. By

incorporating the architecture level instructions, the

approach results in efficient insertion of data while

avoiding any complex operations that could otherwise

degrade the performance.

MATERIAL AND METHODS

 The proposed algorithm created a BST which

was used to match the substrings in a large string. For

creating the tree, the approach given by (Feng, 2011) was

adapted to enhance its performance through lock-free

insertion. Initially, the input data was divided into parts

(substrings of fixed length) equal to the number of

threads created for parallel processing. Each thread then

scanned its allocated portion of input data to generate a

sub-tree. The generated sub-tree could be traversed in

parallel to match for similarity of another input substring.

1. TreeST -- Structure for tree

2. struct TreeST *left // Left sub-tree

3. struct TreeST *right // Right sub-tree

4. char key[len] // len represents length of substring key

5. int count // To count repetitions of the substring

6. NodesLink -- Structure for node link

7. struct NodesLinkST *next

8. struct TreeST *node

9. TreeST Tree -- Declaration of Tree

10. Tree *root = NULL -- Declaration and initialization of root

11. MAIN Function

Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 411

12. Read entire input file in string str and divide it into

 chunks according to THREADCOUNT

13. //creating the number of threads defined by user

14. For i = 0 to THREADCOUNT-1

15. Create and execute thread to work on chunk i

16. End For

17. End MAIN

Figure-1: Core structures and the MAIN function used for parallel BST

1. THREADCODE Function

2. //Let TID be the thread ID

3. For each substring str of size s in a chunk

4. Create node n by allocating memory

5. n->left = NULL

6. n->right = NULL

7. strcpy (n->key, str)

8. CALL INSERT (root, s, TID)

9. End For

10. End THREADCODE

Figure-2: THREADCODE function for creating new nodes

1. INSERT Function (Tree * n, int Len, int TID)

2. //n represents the node, Len represents the length of the string n->key

3. //TID represents the Thread ID, str represents the string to be inserted

4. // Let root be pointer to the first node, and let flag represent the result of comparison

5. Tree *tr, *m

6. tr = root

7. m=NULL

8. While (true)

9. If (tr == NULL) Then

10. If (m == NULL) Then // Root node

11. If (__sync_val_compare_and_swap (&root, 0, n)) Then

12. Add link to node n for thread TID

13. return

14. Else

15. tr = root

16. End If

17. Else If (flag < 0) Then // Left Child

18. If (__sync_val_compare_and_swap(&m->left, 0, n)) Then

19. Add link to node n for thread TID

20. return

21. Else

22. __sync_val_compare_and_swap(&tr, tr, m->left)

23. End If

24. Else // Right Child

25. If (__sync_val_compare_and_swap(&m->right, 0, n)) Then

26. Add link to node n for thread TID

27. return

28. Else

29. __sync_val_compare_and_swap(&tr, tr, m->right)

30. End If

31. End If

32. End If

33. m = tr

34. flag = memcmp(n->key, tr->key, Len)

35. If (flag == 0) Then

Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 412

36. __sync_fetch_and_add(&(tr->count), 1);

37. return

38. End If

39. // Now move tree pointer to left or right

40. If (flag < 0) Then

41. tr = tr->left

42. Else

43. tr = tr->right

44. End If

45. End While

46. End INSERT

Figure-3: Pseudo-code of the INSERT function used to insert data in the tree.

 The basic structures and the MAIN functions

used for the creation of BSTs are given in Fig-1. From

lines 1 to 5, a TreeST data structure is defined, which

included left & right child, key and a count variable for

every node. The key is the substring saved in every node

and the count variable is used to count the total

occurrences of same substring in a string. The NodesLink

structure from lines 6 to 8 are used to traverse the tree by

using pointers to the next node. At line number 9, Tree is

declared as the object of TreeST structure and at line

number 10, the root of the tree was declared. The pseudo

code for the MAIN function was given in lines 11 to 17.

The MAIN function was used to divide data into chunks

and invoke the threads to process those chunks. At line

12, the entire input data (file) was read and then divided

into chunks. From lines 14 to 16, the threads were created

and set to work on chunks as formed in the previous step.

 The pseudo code for the THREADCODE

function is given in Fig-2. Subsequent for the creation of

the root node by MAIN function, the lines 3 to 6 of the

THREADCODE function created new nodes. At line 7,

the input substring was copied into the newly created

node. At line 8, the INSERT function was called to place

newly created node in the tree.

 The pseudo code for the INSERT function is

given in Fig-3. The function being called by threads

simultaneously, was used to perform comparisons and

insert nodes in the tree. The parameters passed to INSERT

function included the pointer to the newly created node,

length of the key of the newly created node and the

Thread Id which was going to perform insertion. The

pointers tr and m were initialized to values root and

NULL, respectively, in lines 5 to 7. For traversing the

tree, a loop was set to start at line 8. At line 9, the

INSERT function checked whether the tree was empty

and subsequently set the root to the newly created node in

lines 10 to 13. If the tree was not empty, the code then

added links to left child using lines 17 to 23 or links to

right child using lines 24 to 31. The left or the right child

was decided through comparison operation which was

performed at line 34. If the key of the newly created node

matched with that of the current node, the occurrence was

incremented through lines 35 to 38. If the key value of

the newly created node was less than that of the current

node, the pointer was moved to, otherwise the pointer

was moved to right through lines 40 to 44. The pointer

and the flag values were subsequently used in next

iteration of the loop during traversal of the tree. Since the

algorithm was specially designed for parallel insertions,

at start it checks which thread was going to insert new

node and in which particular portion of memory. Each

thread called INSERT function without acquiring any

locks, whose implementation was made to work through

atomic instructions.

Experimental Setup: The proposed algorithm was

implemented on the architectures having the Intel Xeon

E-5520 (with 8 Cores), and the Intel Core i5 processors

(with 4 Cores). For evaluation of the algorithms, the

string based searching was performed in Protein sequence

data files. The Protein sequences consist of specific

characters (20 Amino Acid characters). These amino

acids or base elements repeat in a specific pattern to form

a complete Protein sequence. As sample data, Protein

sequences were downloaded from the National Center for

Biotechnology Information website (NCBI, 2016). The

input data file contained 196101 protein sequences

having a total of 66293940 amino acid characters.

 The experimentation was performed to evaluate

sequential, lock-based parallel reported by (Feng, 2011)

and our lock-free parallel implementation to insert

substrings of size 2, 4 and 8 characters in the BST, using

2, 4 and 8 (POSIX) threads reported by (Barney, 2016).

The experimental setup and other configurations are

given in Table 1.

Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 413

Table-1: Experimental Setup Details

Processor Compiler and Operating System

Intel Xeon-E5520, Cache 256 MB (With 8 Cores), 8 GB RAM GCC v 4.1, Fedora Core 10

Intel Core i5 2.2 GHz, Cache 3 MB (With 4 Cores), 4GB RAM GCC v 4.1, Ubuntu 12

RESULTS AND DISCUSSION

 The performance of the sequential, lock-based

parallel, and the lock-free parallel implementations with

input string size of 2 characters on the Intel Xeon and

Intel Core i5 based systems are given in Table-2. As

shown in the results, our lock-free algorithm outperforms

the lock-based parallel and sequential implementations in

all configurations, using 2, 4, and 8 threads.

Table-2: Results on Intel Xeon & Core i5 with input string size of 2 characters

Algorithm

Execution Time in Seconds

(2 Threads)

Execution Time in Seconds

(4 Threads)

Execution Time in Seconds

(8 Threads)

Intel Xeon Intel Core i5 Intel Xeon Intel Core i5 Intel Xeon Intel Core i5

Sequential 10904 11700 10904 11700 10904 11700

Lock-based Parallel 8105 8700 8290 6312 8508 5524

Lock-free Parallel 7600 7820 7705 5000 7880 4670

Fig. A Fig. B

Figure-A: Performance analysis of lock-based and lock-free algorithms on Intel Xeon based system with input

size of 2 characters, Fig. B: Performance analysis of lock-based and lock-free algorithms on Intel Core i5 based

system with input size of 2 characters

 On the Intel Xeon based system, the speedup

results of the lock-based and the suggested lock-free

implementations over the sequential implementation are

given in Fig-4. The lock-free algorithm outperformed the

lock-based algorithm which also exploited parallelism.

As shown in the figure, the speedup obtained by the lock-

free algorithm ranged from 1.37 to 1.44. On average, the

lock-free algorithm had speedup of 1.41, whereas the

lock-based algorithm had average speedup of 1.31.

Consequently, our proposed lock-free implementation

performed 10% better than the lock-based parallel

implementation. Similarly, for the Intel Core i5 based

system, the speedup results of the lock-based and the

suggested lock-free implementations over the sequential

implementation are given in Fig. 5. As shown in the

figure, the speedup obtained by the lock-free algorithm

ranged from 1.36 to 1.50. On an average, the lock-free

algorithm has speedup of 1.43, whereas the lock-based

algorithm had average speedup of 1.30. Consequently,

the lock-free implementation performed 13% better than

the lock-based parallel implementation.

 With input string size of 4 characters, the

performance of the sequential, lock-based parallel, and

lock-free parallel implementations on the Intel Xeon and

Intel Core i5 based systems is given in Table-3. As

shown in the results, the lock-free algorithm outperforms

the lock-based parallel and sequential implementations in

all configurations, using 2, 4, and 8 threads.

 On the Intel Xeon based system, the speedup

results of the lock-based and the suggested lock-free

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 8

Sp
e

e
d

u
p

 o
ve

r
Se

q
u

e
n

ti
al

No. of Threads

Lock-based Lock-free

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 8

Sp
e

e
d

u
p

 o
ve

r
Se

q
u

e
n

ti
al

No. of Threads

Lock-based Lock-free

Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 414

implementations over the sequential implementation.

While using the input string of 4 characters are given in

Fig. 6. As shown in the figure, the speedup obtained by

the lock-free algorithm ranged from 1.27 to 1.36. On an

average, the lock-free algorithm had speedup of 1.30,

whereas the lock-based algorithm had average speedup of

1.19. Consequently, the lock-free implementation

performed 11% better than the lock-based parallel

implementation. Similarly, on the Intel Core i5 based

system, the speedup results of the lock-based and the

lock-free implementations over the sequential

implementation are given in Fig. 7. As shown in the

figure, the speedup obtained by the lock-free algorithm

ranged from 1.3 to 1.38. On an average, the lock-free

algorithm has speedup of 1.34, whereas the lock-based

algorithm had average speedup of 1.22. Consequently,

the lock-free implementation performed 12% better than

the lock-based parallel implementation.

Table-3: Results on Intel Xeon and Core i5 with input string size of 4 characters

Algorithm

Execution Time in

Seconds

(2 Threads)

Execution Time in Seconds

(4 Threads)

Execution Time in

Seconds

(8 Threads)

Intel

Xeon

Intel Core

i5
Intel Xeon Intel Core i5

Intel

Xeon
Intel Core i5

Sequential 12370 13890 12370 13890 12370 13890

Lock-based Parallel 10100 11200 10459 11310 10560 11512

Lock-free Parallel 9100 10010 9670 10400 9725 10650

Fig. A Fig. B

Fig. A: Performance analysis of lock-based and lock-free algorithms on Intel Xeon based system with input size of

4 characters, Fig. B: Performance analysis of lock-based and lock-free algorithms on Intel Core i5 based

system with input size of 4 characters

Table-4: Results on Intel Xeon & Core i5 with input string size of 8 characters

Algorithm

Execution Time in Seconds

(2 Threads)

Execution Time in

Seconds

(4 Threads)

Execution Time in

Seconds

(8 Threads)

Intel Xeon Intel Core i5 Intel Xeon
Intel Core

i5

Intel

Xeon

Intel Core

i5

Sequential 13670 15100 13670 15100 13670 15100

Lock-based Parallel 11010 11600 11300 11703 11590 11935

Lock-free Parallel 10100 10400 10330 10545 10720 10890

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 8

Sp
e

e
d

u
p

 o
ve

r
Se

q
u

e
n

ti
al

No. of Threads

Lock-based Lock-free

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 8

Sp
e

e
d

u
p

 o
ve

r
Se

q
u

e
n

ti
al

No. of Threads

Lock-based Lock-free

Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 415

Fig. A Fig. A

Figure-A: Performance analysis of lock-based and lock-free algorithms on Intel Xeon based system with input

size of 8 characters, Fig. B: Performance analysis of lock-based and lock-free algorithms on Intel Core i5

based system with input size of 8 characters

 The execution performance of the sequential,

lock-based parallel, and the lock-free parallel

implementations with input string size of 8 characters on

the Intel Xeon based system is given in Table-4. Similar

to the results for strings of sizes 2 and 4, the lock-free

algorithm continued to outperform the lock-based parallel

and sequential implementations in all configurations

using 2, 4, and 8 threads.

 The speedup results of the lock-based and the

lock-free implementations over the sequential

implementation using the Intel Xeon based system are

given in Fig. 8. As shown in the figure, the speedup

obtained by the lock-free algorithm ranged from 1.27 to

1.35. On average, the lock-free algorithm has speedup of

1.32, whereas the lock-based algorithm had an average

speedup of 1.21. Consequently, the proposed lock-free

implementation performed 11% better than the lock-

based parallel implementation. Similarly, on the Intel

Core i5 based system, the speedup results of the lock-

based and the lock-free implementations over the

sequential implementation are given in Fig. 9. As shown

in the figure, the speedup obtained by the lock-free

algorithm ranged from 1.38 to 1.45. On an average, the

lock-free algorithm had speedup of 1.42, whereas the

lock-based algorithm had average speedup of 1.29.

Consequently, the lock-free implementation performed

13% better than lock-based parallel implementation.

 It was evident from the results that the lock-free

implementation outperformed the parallel lock-based and

sequential implementations. Overall, using 2 characters

as input, on the Intel Xeon and the Intel Core i5 based

systems, the average speedup attained by the lock-free

parallel implementations was 1.42. This was better than

the lock-based system which was able to attain overall

average speedup of 1.31. Consequently, there was 11%

improvement in execution speed obtained by the

proposed lock-free algorithm. In the second scenario with

4 characters as input on the Intel Xeon and the Intel Core

i5 based systems, the average speedup attained by the

lock-free parallel implementations was 1.32. This was

better than the lock-based system which was able to

attain overall average speedup of 1.21. Consequently,

there was again 11% improvement in execution speed

obtained by the proposed lock-free algorithm. Similarly,

using 8 characters as input on the Intel Xeon and the Intel

Core i5 based systems, the average speedup attained by

the lock-free parallel implementations was 1.37, which

was better than the lock-based implementation. Overall,

there was 12% performance gain in execution speed

obtained by the proposed lock-free algorithm. The

consistent performance improvement over the lock-based

parallel implementation showed the significance of the

lock-free approach suggested in the present algorithm.

Conclusion: The proposed lock-free implementation

invokes multiple threads with each thread operating on a

chunk of input data. The results show that the proposed

lock-free implementation outperforms lock-based parallel

implementations. In future, the proposed approach will be

enhanced for distributed memory systems having

heterogeneous architectures.

REFERENCES

Adamchik, V. (2016). Binary Trees, Available from:

https://www.cs.cmu.edu/ ~adamchik/15-

121/lectures/Trees/trees.html.

Afek, Y., B. Korenfeld, and A. Morrwason (2016).

Concurrent search tree by lazy splaying,

Available

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 8

Sp
e

e
d

u
p

 o
ve

r
Se

q
u

e
n

ti
al

No. of Threads

Lock-based Lock-free

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 8

Sp
e

e
d

u
p

 o
ve

r
Se

q
u

e
n

ti
al

No. of Threads

Lock-based Lock-free

Pakistan Journal of Science (Vol. 69 No. 4 December, 2017)

 416

from:http://www.cs.tau.ac.il/~afek/LazySplaying.

pdf.

Arbel, M., and H. Attiya (2014). Concurrent updates with

RCU: search tree as an example, In Proceedings

of the 2014 ACM Symposium on Principles of

Distributed Computing, Pages 196-205, ACM

New York, U.S.A.

Bahra, A. (2013). Non-blocking algorithms and scalable

multicore programming, Communications of the

ACM, Volume 56, issue 7, 50-61, ACM, New

York, U.S.A.

Barney, B. (2016). POSIX threads programming.

Available from: https://computing.llnl.

gov/tutorials/pthreads/.

Bronson, N. G., J. Casper, H. Chafi, and K. Olukotun

(2010). A practical concurrent binary search tree.

In Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of

Parallel Programming (PPoPP), Pages 257–268,

ACM, New York, U.S.A.

Bender, M. A., J. T. Fineman, S. Gilbert, and B. C.

Kuszmaul (2005). Concurrent cache-oblivious B-

trees. In Proceedings of the 17th ACM

Symposium on Parallelism in Algorithms and

Architectures (SPAA), Pages 228–237, ACM,

New York, U.S.A.

Brown, T., Trevor, F. Ellen, and E. Ruppert (2014). 'A

general technique for non-blocking trees'. In

Proceedings of the 19th ACM SIGPLAN

Symposium on Principles and Practice of

Parallel Programming (PPoPP '14), 329-342,

ACM New York, U.S.A.

Chatterjee, B. , N. Nguyen, and P. Tsigas (2014). Efficient

lock-free binary search trees, Proceedings of the

ACM symposium on Principles of distributed

computing, Paris, France.

Cormen, T. H., C. E. Lewaserson, R. L. Rivest, and C.

Stein (2009). Introduction to algorithms, 3rd Ed.,

The MIT Press, Cambridge, U.S.A.

David, T., R. Guerraoui, and V. Trigonakis (2013).

Everything You Always Wanted to Know About

Synchronization but Were Afraid to Ask. In

ACM Symp. on Op. Sys. Prin., SOSP ’13, pages

33–48.

Feng, J., D. Q. Naiman, and B. Cooper (2011). A

parallelized binary search tree. JITSE, Vol. I,

Issue 1.

Furajh, I., S. Aluru, S. Goil, and S. Ranka (2000). Parallel

construction of multidimensional binary search

trees, IEEE Transactions on Parallel and

Distributed Systems, 11(2):136-148.

Herlihy, M., V. Luchangco, and M. Moir (2003).

Obstruction-free synchronization: double-ended

queues as an example. In Proceedings of the 23rd

IEEE ICDCS, pages 522–529, IEEE Computer

Society, Washington, U.S.A.

Herlihy, M., Wait-free synchronization (1991). ACM

Transactions on Programming Languages and

Systems (TOPLAS), 13(1): 124–149, ACM,

U.S.A.

Howley, S. V., and J. Jones (2012). A non-blocking

internal binary search tree, In Proceedings of the

24th Annual ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA'12), 161-

171, ACM, New York, U.S.A.

Kung, H. T., and P. L. Lehman (1980). Concurrent

manipulation of binary search trees, ACM

Transactions on Database Systems, Vol. 5, No. 3,

September 1980, Pg. 354-382, ACM New York,

U.S.A.

Mitchell, M., J. Oldham, and A. Samuel (2001). Advanced

Linux programming. 1st Ed., New Riders

Publishing, Indianapolis, U.S.A.

Molka, D., D. Hackenberg, and R. Schone (2014). Main

Memory and Cache Performance of Intel Sandy

Bridge and AMD Bulldozer. In Work. on Mem.

Syst. Perf. And Corr., MSPC ’14, pages 4:1–4:10.

Natarajan, A., and N. Mittal (2104). Fast concurrent lock-

free binary search trees, Proceedings of the 19th

ACM SIGPLAN symposium on Principles and

Practice of Parallel Programming, Orlando,

Florida, U.S.A.

NCBI (2016). Protein sequences, National Center for

Biotechnology Information, Available from:

http://www.ncbi.nlm.nih.gov/.

Obstruction Freedom (2016), Available at

http://www.cs.yale.edu/homes/aspnes/pinewiki/Obstructio

nFreedom.html

Ramachandran, A., and N. Mittal (2015), A fast lock-free

internal binary search tree, Proceedings of the

2015 International Conference on Distributed

Computing and Networking Article No. 37, Goa,

India

Russell, S. J., and P. Norvig (2009). Artificial Intelligence,

A Modern Approach, 3rd Ed., Prentice Hall, Inc.,

U.S.A.

Scogland, T. R. W., and W. Feng (2015). Design and

Evaluation of Scalable Concurrent Queues for

Many-Core Architectures. In ACM/SPEC

International Conference on Performance

Engineering (ICPE).

Solworth, J. A., and B. Reagan (1994). Arbitrary order

operations on trees. In Proceedings of the 6th

International Workshop on Languages and

Compilers for Parallel Computing, 21-36,

Springer-Verlag, London, U.K.

Solworth, J. A., and B. Reagan (1995). Parallelizing tree

algorithms: Overhead vs. Parallelism. In

Proceedings of the 7th International Workshop

on Languages and Compilers for Parallel

Computing, 440-454, Springer-Verlag, London,

U.K.

http://www.ncbi.nlm.nih.gov/,%20%09%5bAccessed:%2007/01/2016%5d

