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ABSTRACT: To estimate the variance for rare and cluster population has been the main problem 

in survey sampling. Three ratio type estimators were proposed for population variance utilizing the 

single auxiliary variable assuming the transformed population for adaptive cluster sampling, in 

presented study. The expressions for the mean square error and bias of the proposed estimator were 

derived. The proposed estimatorswere used to estimate the finite population variance in adaptive 

cluster sampling. The simulationswereperformedon a real life data to reveal and evaluate the efficiency 

of the estimators. The results showed that the proposed exponential ratio estimator was more efficient 

compared to the usual sample variance estimator and the proposed ratio type variance estimators in 

adaptive cluster sampling, assuming given conditions. Hence, exponential ratio estimators were 

recommended to estimate the population variance in adaptive cluster sampling. 
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INTRODUCTION 

 Adaptive cluster sampling (ACS) is useful to 

measure the density of rareclustered population in survey 

sampling. Examples of these populations can be derived 

in mineral analysis, animal and plant populations of rare 

and endangered species, toxic wasteabsorption, 

epidemiology of syndromeand 

loudtroublesetc(Thompson, 1992). ACS has the broaduse 

in diversefieldsincluding,Biological (Lo et al., 1997 and 

Acharya et al., 2000), Ecological (Correll, 2001), 

Environmental (Vasudevanet al., 2001 and Smith et al., 

2003), Geological (Boomer et al.,2000), and Social 

Sciences (Thompson and Collins, 2002). 

 A conventional sampling design is used to select 

initial sample in ACS. A condition C is fixed to take 

account of anelement in the sample. Everyunit in the 

neighborhood is included and examined. If the fixed 

condition is fulfilledinongoingprocedure until new 

element satisfied the fixed condition. ACS is a kind of 

network sampling, which 

givesbetterapproximationincontrast to usualsampling 

designs. In case of scarceand group population, this type 

of network sampling is better than conventional design. 

The entireunits studied (together with the initial sample) 

arecomposed the ultimate sample. The group of elements 

which fulfill the fixed condition is recognized as network. 

The elementswhich do not fulfill the condition are 

identified as edge units. Cluster is a blend of network 

elements with associated edge elements (Thompson, 

1992).A variety of estimators are available in 

conventional sampling design to estimate the population 

variance, but these estimators have low efficiency for rare 

and clustered population. There are no estimators 

available that utilizes the auxiliary variable to estimate 

population variance of the rare and clustered population. 

Thus, there is a need to deal with the efficiency issues 

and proposed better estimators appropriate for the 

population variance in adaptive design. 

MATERIALS AND METHODS 

Notations and Some Estimators in Conventional 

Sampling:Supposed a random sample of size n was 

selected with simple random sampling without 

replacementfrom entire units N in the population. The 

variable of interest and auxiliary variable 

wererepresentedthrough y and x with the population 

means  Y and X , population standard deviations yS
and

xS
, coefficient of variations yC

and xC
 respectively. It 

was assumed also that xy
symbolized thepopulation 

correlation coefficient between x and y. The sample 

means of the variable of interest and auxiliary variable 

wererepresentedwith
y

and x . Let a finite population 

1 2 3(U , U , U ,..., U )nU 
of dissimilar and 

exclusiveelements. Consider Y be a variable of interest 

with value iY
  measured on , 1,2,3,...,iU i n

providing a vector of values 1 2 3(Y ,Y ,Y ,...,Y )nY 
.  The 
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objectivewas to approximate the variance of population
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with the source of a random 

sample of sizen, drawn from the population. Some 

notations to be used were described below: 
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Where 22
represent population correlation coefficients 

between 
y

and x ,Where 40 2(y) 
 and 04 2( )x 

were the kurtosis for the population of the study variable 

and the auxiliary variable respectively. 

The usual sample variance estimator of the population 

variance was defined as: 

2
2

0 yS s
 (1) 

Whichwas unbiased estimator of the population variance:

2 2

1

1
(y )

1

N

y i

i

S Y
N 

 
    


 

and its variance was defined as: 

  
2

4
0 2(y)( ) 1yV S S  

 (2) 

Firstly, a ratio estimator for population variance using 

auxiliary information in simple random sampling was 

proposed (Isaki, 1983): 


2

2
2

1
2

x
y

x

S
S s

s


 (3) 

Bias and Mean square error of ratio type variance 

estimatorwas 
2

1S : 

    
2

2
1 2(x) 22Bias( ) 1 1yS S      

   (4) 

      
2

4
1 2(y) 2(x) 22MSE( ) 1 1 2 1yS S         

   
(5) 

 An improvement in variance estimation using 

auxiliary information in simple random sampling was 

proposed using coefficient of variation(Kadilar and 

Cingi, 2006): 


2

2
2

2
2

x x
y

x x

S C
S s

s C

 
  

    (6) 

where

2

2 2

x

x x

S
A

S C



 

Bias and Mean square error of ratio type variance 

estimator was
2

2S : 

    
2

2
2 1 1 2(x) 22Bias( ) 1 1yS S A A      

   (7) 

      
2

4 2
2 2(y) 1 2(x) 1 22MSE( ) 1 1 2 1yS S A A         

 

(8) 

 An improved exponential estimator for 

population variance using auxiliary variable in simple 

random sampling was proposed (Singh et al., 2011). The 

proposed exponential ratio type variance estimator for 

population variance was: 

2 2
2 2

3 2 2
exp x x

y

x x

S s
S s

S s

 
  

 



 (9) 

 Bias and Mean square error of exponential ratio 

type variance estimator was
2

3S : 

    
2

2
3 2(x) 22

3 1
Bias( ) 1 1

8 2
yS S  
 

    
 

 (10) 

      
2

4
3 2(y) 2(x) 22

1
MSE( ) 1 1 1

4
yS S   
 

      
 

  (11) 

Notations and AnExisting Estimator For population 

Variance in ACS: Assume a finite population of N units 

were labelled as 1,2,3,…,N  and  apreliminary sample of 

n units wasdrawnbysrswor. Let yiw
and xiw

 the average 

values in the network which included unit i such that

1

i
yi jj A

i

w y
m 

 
and 

1

i
xi jj A

i

w x
m 

 
respectively. 

ACSwasmeasured as srswor(Thompson, 1992). 

 

The sample means of the variable of interest and 

auxiliary variable in the transformed population 

considered were 1

1 n

y yi

i

w w
n 

 
and 1

1 n

x xi

i

w w
n 

 

respectively. Also, consider 

2 2

1

1
(w )

1

N

wy yi

i

S Y
N 

 
    



and 

2 2

1

1
(w )

1

N

wx xi

i

S X
N 

 
    


represents 

population variance of the study and auxiliary variables 

in transformed population respectively.Similarly 
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2 2

1

1
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1

n

ywy yi
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i
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 
    



represents sample variance of the study and auxiliary 

variables in transformed population respectively. 

Similarly wyC
 and wxC

represents population coefficient 

of variations of the study and auxiliary variables in 

transformed population respectively.The notations to be 

used are described below: 
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Where 22w represent population correlation coefficients 

between yw
and xw

, 40 2( y)w w 
 and 04 2( )w wx 

 

are the kurtosis for the population of the study variable 

and the auxiliary variable respectively, when averages of 

networks are considered . 

Let us define, 
2 2
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Where 0we
 and 1we

are the relative sampling errors of the 

variable of interest and auxiliary variable in transformed 

population respectively, such that: 

0 1( ) ( ) 0w wE e E e 
 , 0 1 (22)( ) ( 1)w w wE e e   

(13) 
2

0 2(wy)( ) ( 1)wE e   
,

2

1 2(wx)( ) ( 1)wE e   
(14) 

 The usual sample variance estimator of the 

population variance in ACS was defined by (Thompson, 

1992) as: 

2
2

4w wyS s
 (15) 

which is unbiased estimator of the population variance in 

ACS,
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with its variance: 

  
2

4
4 2(wy)( ) 1w wyV S S  

 (16) 

Proposed Ratio Estimators for Population Variance in 

Adaptive Cluster Sampling: Following (Isaki, 1983) the 

proposed ratio type variance estimatorin ACS: 

2
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 (17) 

Following (Kadilar andCingi, 2006) another proposed 

ratio type variance estimator: 
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Following (Singh et al.,2011)the proposed exponential 

ratio type variance estimators: 
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Bias and Mean Square Error of Ratio Type Variance 

Estimator
2

5wS : 

In order to drive bias of ratio type variance estimator 

2

5wS  by using the estimator(17) was written as: 
2 2

02
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(1 e )
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w wy wx

w

w wx

S S
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S
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
  (20) 

2 2 2

5 0 1 0 1 1[1 ]w wy w w w w wS S e e e e e


    
  (21) 

Apply expectation on both side of (6.2) and using the 

notation (12and13) we obtained, 

    
2

2
5 2(wx) (22)Bias( ) 1 1w wy wS S      

  (22) 

In order to drive mean square error of (17) we have (23) 

by ignoring the term degree 2 or greater as, 

2 2

5 0 1[1 ]w wy w wS S e e

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  (23) 

2 2 2

5 0 1[ ]w wy wy w wS S S e e


  
  (24) 

Taking expectation and squaring on both side of(24) the 

obtained as, 

      
2

4
5 2(wy) 2(wx) (22)MSE( ) 1 1 2 1w wy wS S         

 
 (25) 

Bias and Mean Square Error of Ratio Type Variance 

Estimator
2

6wS : 

In order to drive bias of ratio type variance estimator 

2

6wS by using the estimator (18) may be written as 

follows: 
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1
2
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 Opening the terms up-to the second degree, we 

got (29) as follows: 

2 2 2 2

6 0 1 2 1 2(1 )S 1w w wy w wS e e A e A


        (29) 

 Simplifying, discarding the terms three or above 

we got as follows: 
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      
 (30) 

Apply expectation on both sides of(30) and using the 

notations(12and 13) we got as follows: 

    
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 To drive mean squared error of(18) we have(32) 

by discarding the term degree two or above asfollows: 
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 Apply expectation and squaring on both sides 

(33) we obtained: 
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Bias and Mean Square Error of Exponential Ratio 

Type Variance Estimator
2

7wS : 

In order to drive bias of exponential ratio type variance 

estimator 
2

7wS  the estimator(19) may be written as 

follows: 
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Opening the exponential term up-to second degree, we 

got(37) as follows: 
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Simplification, discarding the terms with degree three or 

more we get as follows: 
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Applying expectation on both sides of(38) and using 

notations(12and13) as follows: 

    
2

2
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w wy wS S  

 
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To drive mean squared error of(19) we have(40) as 

follows: 
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Expanding the exponential term, discarding terms with 

power two or above, we got(41) as follows: 
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Applying  square and expectations on both sides of(42) 

and using notation (12and 13) we got asfollows: 

      
2

4
7 2(wy) 2(wx) (22)
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MSE( ) 1 1 1

4
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 
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SimulationsPerformance: Anactual population was 

considered and simulations executedto measure the 

efficiency of proposed estimators with the other 

estimators. Ten thousand iterations was performed for all 

estimators to got accuracy estimates with srsworand the 

preliminary sample size of 5,10,15,20 and 25, for the 

simulations study.In ACS,the ultimate sample size 

wasgenerallybigger than the preliminary sample size. The 

estimatedultimate sample size in ACS wasdenoted by 

E(v),was sum of the inclusion probabilities of all the 

quadrats, 

1

(v)
N

i

i

E 



 (44) 

 In ACS the expected final sample size varies 

from sample to sample. For the comparison, the sample 

variance from srswor based on E(v) has variance using 

the formula: 
4
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The estimated relative bias of the estimated variance is 

defined as: 

 
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Where 

2

*Ŝ
 was the magnitude of the relevant estimator 

for the sample i and the number of iterations was 

represented by r. 

The estimated mean squared error of the estimated 

variance: 

2 2 2

* * *

1

1ˆ ˆ(S ) (S )
r

i

MSE S
r 

 
 (47) 

Thepercentage relative efficiency is defined as: 
2

2

*

ˆVar(S )
*100

ˆMSE(S )

y
PRE 

 (48) 

Population:Real population comprisedof blue-winged 

teal (BWT) data and green-winged teal (GWT) data 

collected (Smith et al.,1995)were counts of two species 

of waterfowl in 50 100-
2km  quadrats in central Florida. 

The green-winged teal (Table 1) data was taken as the 

study variable and the condition was imposed on the 

auxiliary variable BWT (Table 2) as xC
> 10 to added 

unit in the sample. The x-values wereattained and 

averaged (Table 3) for keeping the sample network in 

accordancewith the pre definedcondition and for every 

sample network y-values were attained and 

averaged(Table 4). 

Table 1.Green-winged teal data as study variable. 

 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 35 75 0 

0 0 0 0 0 0 0 0 2255 13 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 24 

 

Table 2.Blue-winged teal data as auxiliary variable. 

 

0 0 3 5 0 0 0 0 0 0 

0 0 0 24 14 0 0 10 103 0 

0 0 0 0 2 3 2 0 13639 1 

0 0 0 0 0 0 0 0 14 122 

0 0 0 0 0 0 2 0 0 177 

 

Table 3.Transformed blue-winged teal data as auxiliary variable. 

 

0 0 3 5 0 0 0 0 0 0 

0 0 0 19 19 0 0 10 2811 0 

0 0 0 0 2 3 2 0 2811 1 

0 0 0 0 0 0 0 0 2811 2811 

0 0 0 0 0 0 2 0 0 2811 

 

Table 4.Transformed green-winged teal data as study variable. 

 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 35 470.80 0 

0 0 0 0 0 0 0 0 470.80 13 

0 0 0 0 0 0 0 0 470.80 470.80 

0 0 0 0 0 0 0 0 0 470.80 

 

RESULTS AND DISCUSSIONS 

 High positive correlation (0.99)between both 

types of birdswas found and correlation 

remainedunchanged in the transformed population. So, 

there found a high correlation between the sampling unit 

level and network level. Theconventionalestimators in 

srsworexecutedwell than ACS estimators for high 

correlation at sampling unit level and lower at high 

correlationat network level (Dryver and Chao, 2007). 

 The overall variance of the variable of interest 

was 101576.10 and for auxiliary 3716168 while in the 

transformed population variances reduced to 20291.12 

and 724927.10 respectively.The within network variance 

of the variable of interest for the network (75, 2255, 0, 0, 

24) was 995740.70with corresponding values of the 

auxiliary variable within network variance 36642684. 

Therefore, adaptive estimators were anticipated to 

executesuperior and more efficient than usual comparable 

estimators. The adaptive estimators were more efficient 
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than the usual estimators if within-network variances 

account a large portion of the overall variance (Dryver 

and Chao, 2007). 

Table 5.Estimated Relative Bias. 

 

n 2

0Ŝ
 

2

1Ŝ
 

2

2Ŝ
 

2

3Ŝ
 

2

4Ŝ
 

2

5Ŝ
 

2

6Ŝ
 

2

7Ŝ
 

5 -0.03 
*
 1.44 -0.55 0.00 

*
 1.23 -0.33 

10 0.02 
*
 1.60 -0.47 0.00 

*
 0.68 -0.17 

15 0.02 
*
 1.49 -0.41 0.00 

*
 0.37 -0.09 

20 0.02 12.50 1.33 -0.35 -0.01 7.76 0.14 -0.06 

25 0.00 6.86 1.09 -0.28 0.00 2.49 0.06 -0.03 
The results of estimated percentage relative efficiencies in the comparable sample sizes in (Table 6) showed the inferior performance of usual 

estimators under srswordueto the larger variances of the networks of the variable of study. The usual sample variance estimator in ACS performed 

better as compare with the proposed estimators 

2

5Ŝ
and 

2

6Ŝ
.The comparative percentage relative efficiencies increase as the sample size increases for 

the proposed adaptive estimators

2

6Ŝ
and

2

7Ŝ
. 

 

Table 6.Estimated Percentage Relative Efficiency. 

 

E(v) 2

0Ŝ
 

2

1Ŝ
 

2

2Ŝ
 

2

3Ŝ
 

2

4Ŝ
 

2

5Ŝ
 

2

6Ŝ
 

2

7Ŝ
 

10.57 40.20 
*
 13.65 168.90 6091.0 

*
 217.31 12130.25 

18.46 39.45 
*
 8.98 124.00 6495.1 

*
 375.72 11024.60 

24.54 41.29 
*
 7.89 101.15 6868.7 

*
 671.54 12552.49 

29.45 43.39 0.02 7.42 86.87 7055.4 0.60 1634.47 14848.68 

33.60 45.89 0.04 7.83 77.44 7535.5 1.66 3914.24 18850.34 

The percentage relative efficiency of proposed exponential ratio estimator 

2

7Ŝ
remainedmaximum for all sample sizes in comparison 

with all the estimators. Thus use of modified exponential ratio estimator 

2

7Ŝ
was better in ACS, and exponential type estimators were 

much suitable and robust for patchy, rare and clustered population. The product and regression estimators for population variance can 

be studied, moreover the logarithmic type estimators can also be studied as a future research in ACS. 

 

Table 7. Descriptive Measure of the Population 

 

282.42X   
2 3716168xS 

 
6.83xC 

 
0.99xy 

 

48.04Y   
2 101576.10yS 

 
6.64yC 

 
0.99wxwy 

 

282.42xw   
2 724927.10wxS 

 
3.02wxC 

 
50N   

48.04yw 
 

2 20291.12wyS 
 

2.97wyC 
 

10xC 
 

 

Conclusions:In this simulation study 0/0 was not treated 

as 0. The classical ratio estimator
2

1Ŝ
and proposed ratio 

estimator 
2

5Ŝ
in ACS did not perform and return no value 

(
*
) for the initial sample sizes 5, 10 and 15.  As the 

sample size increases the estimated relative bias (Table 5) 

of all the estimators’ decreases. The usual sample 

variance estimator 
2

4Ŝ
showed that amount of estimated 

relative bias is zero so it is an unbiased estimator for 

population variance in ACS.  The proposed ratio 

estimator 
2

5Ŝ
produced no value (

*
) for the sample sizes 

5, 10 and 15 just like ratio estimator
2

1Ŝ
.  At sample size 

20 both ratio estimators 
2

1Ŝ
 and

2

5Ŝ
 showed amount of 

biased but this amount decreased sharply at sample size 

25. The proposed estimators 
2

6Ŝ
also showed the large 

value at the initial sample size 5 but this amount sharply 

declined for larger sample sizes. The proposed estimators 
2

7Ŝ
 showed negative amount but this also reduces for 

larger sample sizes. Thus it was suggested to include a 

large sample size for the small bias in ACS, as it 

happened in simple random sampling. 
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