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ABSTRACT: In this study the estimate obtained from Gini’s mean difference ( G ) is used in the 
construction of decision limits for analysis of means (ANOM). The proposed limits are constant free 

because the estimate obtained from the G-Chart demands no constant like 2d and 4c used for R and S 
charts for the unbiased estimation of . The comparison of the proposed strategy to existing strategies 
is made using simulated data from different populations.  The comparison reveals that the decision 
limits constructed by the proposed strategy are least affected by departure from normality.
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INTRODUCTION

Analysis of means (ANOM) is a technique 
originally developed by Ott (1967) for comparing a group 
treatment means to see if any one of them differs 
significantly from the overall mean. It can be thought as 
an alternative to the analysis of variance (ANOVA) and 
in fact for only two treatments both the procedures are 
equivalent. Comparing the sample mean values to the 
overall grand or target mean value, about which decision 
lines have been constructed, carries out Ott’s procedure.  
If any sample mean lies outside these decision lines, it is 
declared significantly different from the target mean 
level. An ANOM chart, conceptually similar to control 
chart, portrays decision lines so that statistical 
significance as well as practical significance of samples 
may be assessed simultaneously. 

The analysis of means has an advantage over 
analysis of variance, its results can be presented 
graphically, making the procedure easy to explain and 
visualize and allowing for an assessment of practical 
significance as well as statistical significance. Although 
ANOM has practical advantages over ANOVA but it has 
no optimal advantage in any mathematical sense because 
it behaves similarly. Therefore, we can say that two 
methods are nearly enough equivalent that both will 
disclose any lack of control among averages and when 
one say control is good, the other will too. Ott (1967) 
introduced analysis of means procedure, based on 
multiple significance tests following the pioneering work 
of Halperin (1955), for controlling the group of means 
instead of one mean at a time.

In the analysis of means the estimate of  is 
usually calculated from sample range (R) and standard 
deviation (S). The sample statistic R and S are defined as:
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The sample statistic R is linear function of only 
two extreme values as obvious from (1). It is widely used 
to estimate the true process standard deviation . It 
ignores a lot of sample information for larger values of n

that decreases its efficiency. The sample statistic S is 
non-linear function of data, as obvious from (2) and is 
very sensitive to the presence of outlier in the data.

The Gini’s mean difference of a set {x1, x2, ..., 
xn} is defined as:
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Jordan (1869) claimed improved precision of 
G over Gauss’s root mean square estimator for normal 
distribution. According to Von Andrae (1872) the 
asymptotic efficiency of G relative to S is 97.8% for 
normally distributed data and G, given its much simpler 
calculation, is a serious competitor to the usually 
preferred S.

Gini (1912) used G defined in (3) as an index of 
variability in a population consisting of x1, x2, ..., xn 

therefore it is generally known as Gini’s mean difference. 
David (1968) showed that for normally distributed 

characteristic the sample statistic 
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is an unbiased measure of process 

variability. Let we name it K , i. e.
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Decision limits in analysis of means: For comparing the 
individual sample means with the overall mean, Ott 
(1967) 
computed the decision lines based on range as an 
estimate of true process variability as:
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where

x : average of k sample means,
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Where,

R , average of k sample ranges,
*
2d

, a factor for estimating  from R and it 

depends on k (whereas the usual 2d
factor in the control 

chart is independent of k), and n, sample size.

Tables of ( )H  for 0.05  and 0.01have been 
developed by Ott (1967) for selected values of k and 

selected degree of freedom for error 0.90 ( 1).v k n 
In the situation where number of observations in 

treatment is constant and is small, Sheesley (1981) used 
range as an estimate of the within group standard 
deviation instead of obtaining a pooled estimate of the 
variance and then taking its square root. The decision 
limits under the Sheesley’s procedure are constructed as:
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Where,

R is average of k sample ranges and  ( , , )m kh  , is 
critical values depend upon number of sample k and 
degrees of freedom for error m are derived by Nelson 
(1983).

Nelson (1982) obtained the exact critical points for 

( )ah
and used the decision limits as:
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where Sis the pooled standard deviation and ( )h  is a 
critical point, which depends on k and v (degrees of 

freedom in
2S ). Instead of estimating the pooled standard 

deviation S we may use 4

S

c (c4 is a constant quantity that 

depends upon sample size n) as Sheesley (1981) used 2

R

d

as estimate of within group standard deviation. 

Proposed decision limits: The process variability control 

charts are used to monitor process variability e.g. R

chart, S chart etc. These charts help in finding the 

unbiased estimate for process variability e.g. If R chart 

shows stability, the constant 2d
, when divided by R , 

provides an unbiased estimate of process variability. 

Whereas S chart shows stability, when S divided by

4c
, provides an unbiased estimate of process variability.  

Riaz and Saghir (2005) developed a design structure of a 

new Shewhart type control chart namely G -Chart using 

the estimate K defined in (4) as an estimate of process 
variability. This chart provides a constant free 

environment for unbiased estimation of  (i.e. K
directly provides unbiased estimate of ).

In this study we propose a scheme for decision 
limits based on constant free estimate of  obtained 

from G -Char following the idea of Sheesley (1981) as: 
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K is average of k sample K’s as defined in (4) for an 
appropriate sample size.

Simulation study: Based on 1,000 random samples of 

sizes 3 and 10 drawn from normal population 
̂

is 

estimated using 2

R

d , 4

S

c and K , and the decision limits 
constructed for ANOM charts using the data sets 
provided in Appendix. Later, 1,000 random samples of 
sizes 3 and 10 drawn from some non-normal populations 
having same standard deviation as the standard deviation 
of the comparable normal distribution discussed first and 
the decision limits constructed for ANOM charts using 
the data sets provided in Appendix. 

The distributions used for this comparison are:
1. Normal distribution with mean 0 and standard 
deviation 2.3833 for sample sizes 3.
2. Normal distribution with mean 25 and standard 
deviation 8 for sample sizes 10.
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3. t- distribution with 5 d.f.
4. t- distribution with 10 d.f.
5. t- distribution with 20 d.f.
6. Exponential distribution with 0 as location 
parameter and 1 as scale parameter. 

Based on these 1,000 random numbers drawn from 
above distribution, process variability is calculated using 
range, standard deviation and Gini’s mean difference and 
for comparison purposes results are provided here in 
Table 1.

Table 1. Summary statistics of standard deviation for 
different distributions.

(i) Normal distribution with X mean and 2.3833 
st.dev for n = 3
Estimate used N Mean Std. Dev.  
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

2.3826
2.3835
2.3830

0.2795
0.2802
0.2787

(ii) t-distribution with 5 d.f for n = 3.
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

3.4639
3.4575
3.4712

0.4698
0.4718
0.4742

(iii) t-distribution with 10 d.f for n = 3.  
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

2.5956
2.5546
2.6023

0.3622
0.3669
0.3642

(iv) t-distribution with 20 d.f for n = 3. 
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

2.4610
2.4523
2.4759

0.3430
0.3452
0.3403

(v) Exponential with 0 as location and 1 as scale parameter 
for n = 3
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

2.4233
2.4153
2.4554

0.4192
0.4294
0.4346

(vi) Normal distribution with X mean and 8 st.dev for n 
= 10
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

8.0236
8.0382
8.0269

0.4857
0.9489
0.4551

(vii) t-distribution with 5 d.f for n = 10. 
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

8.2699
7.9081
7.7857

0.7129
1.3440
0.5464

(viii) t-distribution with 10 d.f for n = 10.  
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

8.1783
7.9441
8.1893

0.5384
1.0123
0.4985

(ix) t-distribution with 20 d.f for n = 10. 
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

8.0762
7.9868
8.0969

0.5182
0.9494
0.5023

(x) Exponential with 0 as location and 1 as scale 
parameter for n = 10 
Using Range
Using Gini’s
Using Std. Dev.

1000
1000
1000

9.2835
8.7705
9.3795

1.3885
2.2182
1.3509

Table1 reveals the following:
1. From Table. 1 (i) and (vi) it is obvious that for the 

normally distributed data the average value of three 
estimates gives almost similar estimate of overall 
variation (i.e. the true process variability in quality 
terminology). The reason of this result is that as all 
these estimates are unbiased estimates of the true 
process variability.

2. From Table. 1 (ii) - (v) and (vii) - (x) it is observed 
that when data deviates from normality even then the 
estimates obtained from G chart is best estimate of 
the true process variability because it is least affected 
among the three estimates under study. 

Now analysis of means procedure is used to 
explain graphically the proposed schemes of the decision 
limits for ANOM charts based on the estimates provided 
in above Table 1 for the data sets provided in Appendix 
following the idea of Muhammad et .al (1993). The 
ANOM charts for estimates under study are presented 
here in fig 1-3 for normal distribution and in fig 4 -9 for 
other than normal distribution for sample sizes 3, and in 
fig 10 - 12 for normal distributions and in fig 13 - 18 for 
other than normal distributions for sample sizes 10. 

Fig. 1. ANOM chart for data set using range for normal 
process

Fig 2. ANOM chart for data set using gini's for normal 
process
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Fig 3. ANOM chart for data set using St.dv. for normal 
process

Fig. 4. ANOM chart for data set using range for t 10 d.f 
process

Fig. 5. ANOM chart for data set using Gini's for t 10 d.f 
process

Fig. 6. ANOM chart for data set using St.dv. for t 10 d.f. 
process

Fig. 7. ANOM chart for data set using range for exponential 
1 process.

Fig. 8. ANOM chart for data set using gini’s for exponential 
1 process. 

Fig. 9. ANOM chart for data set using St.dv for exponential 
1 process

Fig. 10. ANOM chart for data set using range for normal 
process
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Fig. 11. ANOM chart for data set using Gini's for normal 
process

Fig.12. ANOM chart for data set using St..dv. for normal 
process

Fig 13 ANOM chart for data set using range for t with 10 d.f 
normal process

Fig 14 ANOM chart for data set using gini's for t with 10 d.f 
normal process

Fig.15. ANOM chart for data set using St.dv for t with 10 d.f 
Process

Fig.16. ANOM chart for data set using range for 
exponential 1 Process

Fig.17. ANOM chart for data set using Gini's for 
exponential 1 process

Fig 18 ANOM chart for data set using St.dv for exponential 
1 process



Pakistan Journal of Science (Vol. 64 No. 4 December, 2012)

368

In the above figures the symbol ‘1’ represent the 
point which is out of control or not consistent with the 
overall mean. The decision limits of the above graphs are 
based on: 

15.28X  for data set 1, m =36, n =3, k=20, 
(0.05, , ) 3.148h m k  for the figures 1-9 and

26.12X  for data set 2, m =162, n =10, k=20, 
(0.05, , ) 3.016h m k  for the figures 10-18 and ̂ is 

obtained from the above Table 1.
We observed that for normally distributed data (for 

data set.1 of sample sizes 3) all the estimates produced 
same decision limits and as a result the state of control 
(whether in control or out of control) remains same in all 
the three cases as is obvious from figures 1 - 3. For non-
normally distribute data the decision limits based on for 
the estimates obtained from G chart is least effected as 

compared to the estimates obtained R and S charts as 
is clear from 5-9. The same is observed for the data set.2 
of sample sizes 10 as its obvious from figures 10-18. 
Consequently we claim that the discriminatory power of 
the ANOM chart is least affected by departure from 
normality when the decision limits are constructed using 

the estimates obtained from G chart. The claim is 
apparently supported in three figures 4-6 where point 14 
is actually out of control and the affected decision limits 
based on the estimates obtained from G chart is showing 

point 14 out of control (fig 4) while is not the case if the 

estimates are obtained from R and S charts.

APPENDIX 
Data Set 1.

An experiment was conducted, Muhammad et 
al. (1993), for food consumed (mg) per INSTAR LARVA 
under different treatments and was measured as:

Treatment R1 R2 R3

1 14.30 11.82 14.88
2 17.65 7.98 15.97
3 11.82 12.81 16.35
4 13.02 12.49 15.97
5 12.74 13.40 15.89
6 14.21 13.80 15.46
7 14.64 13.05 13.88
8 13.64 12.52 14.92
9 16.97 10.72 12.54

10 15.05 13.71 15.52
11 17.00 12.75 15.34
12 15.35 14.38 13.97
13 12.71 15.35 13.97
14 19.03 22.68 17.54
15 25.86 24.04 20.66
16 17.39 19.11 20.76
17 16.62 13.72 19.30
18 13.84 14.92 15.64
19 14.51 13.65 15.80
20 15.98 13.83 13.42

Data Set 2.
A hypothetical data set generated from normal process (row wise) with mean 25 and st.dev 8 (with row 5, 7 and 9
disturbed by adding a constant amount 7, 15 and 10 respectively).

14.9926 17.8493 26.4133 15.0199 32.5929 23.8213 18.9816 33.0385 22.3844 16.8063
21.6634 27.1479 15.1405 22.1316 19.9353 30.4281 16.7610 14.7840 39.5966 25.8214
21.4046 24.0037 42.2537 21.1991 38.7195 26.5414 30.8343 11.8979 26.4504 27.2104
16.1441 34.7498 22.3463 13.1158 19.8447 25.4109 26.2692 13.1091 32.6411 16.3399
35.9986 43.9226 13.7717 39.8997 36.8978 31.7777 37.8997 37.9920 32.9964 26.8796
33.2620 22.4642 26.3375 16.0709 10.2923 17.2225 14.5295 16.8935 20.3843 34.2682
48.4405 53.3277 35.4845 50.1250 55.5317 56.2211 44.6285 49.1427 42.4264 42.3570
17.8394 20.0611 13.3025 12.2820 34.2306 21.3968 17.5088 34.3816 20.9972 21.1166
43.1083 46.2056 49.2902 57.2600 49.7069 43.0985 38.6308 43.5406 45.5045 37.1890
27.6154 31.9127 23.4333 22.5963 7.4311 13.6870 25.6735 19.8647 25.9113 12.9879
2.0732 26.7588 23.8237 29.9192 15.0837 13.8754 12.9054 28.4594 22.6949 25.1610

31.5406 18.0311 32.4378 16.9898 21.7639 31.0040 20.0494 25.8890 20.2270 13.3578
10.5338 10.5150 27.5925 40.2056 26.0264 28.8224 24.4927 16.1548 19.4376 16.4114
33.3330 27.1122 35.7043 21.7985 30.5135 17.3169 29.8923 31.8018 33.7078 30.4746
23.3671 30.6085 21.2627 13.6770 30.9617 23.6628 35.0568 24.1758 20.5567 33.9112
12.1388 30.6350 23.3612 28.4510 28.6651 29.3254 18.4560 14.4898 39.8276 19.9882
15.0065 34.0063 13.4529 26.7821 22.1141 12.2504 19.6651 24.0522 19.9415 20.9734
34.6125 32.5291 29.8270 18.4894 29.6426 22.7328 27.4935 21.8881 30.5271 12.1292
33.2991 23.6034 19.5604 24.2852 35.5245 7.5181 24.4244 21.9147 16.4995 31.0257
38.9386 16.1893 12.5455 10.2326 35.5856 6.8294 31.0576 21.7895 33.4454 15.0012
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Conclusion: The estimate for within variation (i.e. the 
true process variability in quality terminology) 
obtained from G-chart is the best estimate of the true 
process variability because it is constant free (i.e. it 

demands no constant like 2d
and 4c

used for R and S 
charts for an unbiased estimation of true process 
variability) and least affected among the three 
estimates under study.  The decision limits for ANOM 
chart using the estimate obtained from G chart are least 
affected by departure from normality. Also for the 
larger sample sizes the affect of non-normality is more 
for the decision limits of ANOM chart when the 
estimate of  is obtained from R and S charts as 
compared to G-Chart. Consequently we claim that the 
discriminatory power of the ANOM chart is least 
affected by departure from normality when the decision 
limits are constructed using the estimates obtained 

from G chart.
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