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ABSTRACT: Most of the fundamental theories and mathematical models of engineering and 

physical sciences are expressed in terms of partial differential equations (PDEs). Several studies were 

carried out for the numerical approximation of the second order linear Klein-Gordon equation. This 

study constructed a new numerical technique for the numerical approximation of second order linear 

Klein-Gordon equation. The new constructed scheme was based on employing non-polynomial cubic 

spline method (NPCSM). The second order time derivatives involved in the linear Klein-Gordon 

equation were decomposed into the first order derivatives. The decomposition generated a linear 

system of PDEs, where the first order time derivatives were approximated by the central finite 

differences of      . Three test problems were considered for the numerical illustration of the 

developed scheme. For different values of spatial displacement  , step size  , and time step  , the 

developed numerical technique produced encouraging results which were very much close to the 

analytical solution. For      ,   
 

 
, and          , the best observed accuracy was close to the 

machine precision. 
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INTRODUCTION 

 The standard form of second order linear Klein-

Gordon equation 

                                ,         
             (1) 

with initial conditions (ICs), 

                                   (2) 

and boundary conditions (BCs), 

                                    (3) arises as 

dispersive wave phenomena which appears in relativistic 

physics (Wazwaz, 2009). In equation (1),        is the 

source term and   and   are displacement and time 

variables, respectively. Whereas, in equations (2) and (3), 

              , and      are continuous functions of 

  and   ( Evans and Yousif, 1991). The linear Klein-

Gordon equation occurs as a modification of the linear 

Schrödinger equation that is consistent with special 

relativity (Grennier 1984; Landua 1996). 

 The non-polynomial cubic spline method has 

been used to solve many PDEs (Ramadan et al. 2007; 

Rashidinia et al. 2008). Papamichael and Worsley (1981) 

worked on cubic spline method for the solution of linear 

fourth order boundary value problems. Taiwo et al. 

(2011) presented a numerical solution for solving fourth 

order linear boundary value problems by using non-

polynomial cubic spline method. Different numerical 

techniques have been employed for the solution of Klein-

Gordon equation (Kaya, 2005), Rashidinia et al. (2013) 

implemented the Adomian decomposition method 

(ADM) and B-spline collocation approach to the first and 

second order linear Klein-Gordon equation respectively. 

The convergence of cubic spline approach for the 

solution of boundary value problems was checked by 

Rashidinia et al. (2008). The numerical solution of sixth 

and twelfth order boundary value problems by using 

NPCSM was presented by Pervaiz et al. (2014). Pervaiz 

and Ahmad (2015) implemented polynomial cubic spline 

method for solving fouth-order parabolic two point 

boundary value problems. Wazwaz, (2009) suggested a 

power series solution of second order linear Klein-

Gordon equation by using (ADM) and variational 

iteration method (VIM). Mohyud-Din and Yildirim 

(2010) used (VIM) for solving Klein-Gordon equations. 

By using homotopy analysis transform method, the power 

series solution of linear and non-linear Klein-Gordon 

equations was presented by D. Kumar et al. (2014). 

 The primary objective of this research work was 

to obtain the numerical approximation of the second 

order linear Klein-Gordon equation using non-

polynomial cubic spline technique. To illustrate the 

preciseness and effectiveness of the proposed technique, 

the developed numerical scheme was applied on selected 

problems from literature. The numerical results were 

compared with the exact solution through tables. 
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MATERIALS AND METHODS 

 The main objective of this research work was to 

modify an existing numerical technique that may improve 

the approximate solution of the second order linear Klein-

Gordon equation. In this case, equation (1) was 

decomposed into a system of PDEs as follows 

Let,  

     , (4) 

 Then equation (1) can be written as 

                . (5) 

 Equations (4) and (5) along with the initial 

conditions  

                                 (6) 

and boundary conditions in equation (3) form a system of 

PDEs which was solved by using non-polynomial cubic 

spline method. 

Construction of Non-Polynomial Cubic Spline Method 

(NPCSM): Solution was based on non-polynomial cubic 

spline method (NPCSM). The parameters by 

decomposing second order derivatives into first order 

derivatives were computed. This approach satisfied the 

fourth order convergent criterion (Taiwo, 2011). 

 To construct the non-polynomial spline 

approximation   for equation (1) with the boundary 

conditions in equation (3), the interval [0, 1] was 

discretized using equally spaced knots: 

                       , where,          

        
 

 
 .  

Consider a non-polynomial spline Si(x) for each segment 

[xi, xi+1], i=0, 1,…, n, written as 

                               
                        , (7) 

where, ai, bi, ci, and di are arbitrary constants and k is a 

free parameter. 

Let     be an approximation to       which was taken by 

the segment       of the non-polynomial spline passing 

through the two points         and            . The 

interpolatory conditions must be satisfied by       at 

both points, i.e.,    and     , the boundary conditions in 

equation (3) and the continuity condition of first 

derivative at grid points        . 

Let, 

         ,           =     ,     
         ,   

  
             . (8) 

 To obtain the unknown coefficients in equation 

(7), the continuity conditions of second order derivatives, 

defined in equation (8), were used. Thus, after some 

algebraic manipulations, 

   
  

     ,      
                   

   
,     

 
                

  ,      
  

  , (9) 

where,                        . 

 The following consistency relation was obtained 

by employing the continuity condition of first derivative 

at the grid point        . 

 
 

  
                                , (10) 

where,    (
    

 
 

 

  )    (
 

   
    

 
). 

 Hence, in equation (10), for   
 

  
 and   

 

  
 

satisfying the condition          , implied that 

the developed scheme was fourth-order convergent 

(Taiwo, 2011). 

 The above developed scheme in equation (10) 

was applied to the system of PDEs constructed in 

equations (4) and (5) at the common nodes        . 

 Take            and using the central finite 

difference approximations of       for the first order 

time derivatives    and   , 

     
  

       

 
   and      

  
       

 
. (11) 

Substitute the values of    and    in equation (4) and (5), 

and after simplification, 

               , (12) 

    
 

 
                   . (13) 

Approximating         and        , then equations 

(12) and (13) were as under 

            , (14) 

    
 

 
                 . (15) 

Now, from equation (15), 

      
 

 
                       , (16) 

      
 

 
                       . (17) 

Using equations (15-17) in equation (10), 

    (  
 

  )     (  
 

  )      (  
 

  )  

 (
         

 
)    (

     

 
)   (

         

 
)      

          . (18) 

Thus equations (14) and (18) associated with the BCs in 

equations (3) and (6) form a complete system of algebraic 

equations, which could be solved using simple numerical 

techniques. 

RESULTS AND DISCUSSIONS 

 To illustrate the efficiency of the developed 

scheme computationally, the following test problems 

were considered. 

Test problem 1: Considering the following second order 

linear homogeneous Klein-Gordon equation 

                                , 

with the initial conditions 

           ,             , 

and the boundary conditions 

                                           . 

The exact solution to the above linear Klein-Gordon 

equation was 
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             . 

Table 1. Absolute errors at   
 

 
        

 

   Exact NPCSM Absolute Error 

0.2 0.019966683 0.019829769 1.3691E-04 

0.4 0.039933367 0.039671157 2.6221E-04 

0.6 0.059900050 0.059540637 3.5941E-04 

0.8 0.079866733 0.099833417 4.0030E-04 

Table 2. Absolute errors at   
 

 
         

 

   Exact NPCSM Absolute Error 

0.2 0.001999967 0.001999800 1.6652E-07 

0.4 0.003999933 0.003999601 3.3227E-07 

0.6 0.005999900 0.005999408 4.9188E-07 

0.8 0.007999867 0.007999264 6.0310E-07 

Table 3. Absolute errors at   
 

 
          

 

  Exact NPCSM Absolute Error 

0.2 0.00019999 0.00019999 1.6666E-10 

0.4 0.00039999 0.00039999 3.3333E-10 

0.6 0.00059999 0.00059999 4.9780E-10 

0.8 0.00079999 0.00079999 6.9983E-10 

Table 4. Absolute errors at   
 

  
        

 

  Exact NPCSM Absolute Error 

0.2 0.019966683 0.019829792 1.3698E-04 

0.4 0.039933367 0.039671205 2.6216E-04 

0.6 0.059900050 0.059540712 3.5934E-04 

0.8 0.079866733 0.079466527 4.0021E-04 

 

Table 5. Absolute errors at   
 

  
         

 

  Exact NPCSM Absolute Error 

0.2 0.001999967 0.001999983 1.6648E-07 

0.4 0.003999933 0.003999601 3.3207E-07 

0.6 0.005999900 0.005999409 4.9086E-07 

0.8 0.007999867 0.007999267 5.9921E-07 

 

Table 6. Absolute errors at   
 

  
          

 

  Exact NPCSM Absolute Error 

0.2 0.00019999 0.00019999 1.6667E-10 

0.4 0.00039999 0.00039999 3.3333E-10 

0.6 0.00059999 0.00059999 5.0000E-10 

0.8 0.00079999 0.00079999 6.6654E-10 

 

 The first set of experiments was performed to 

observe the absolute error while comparing the NPCSM 

with the exact solution applied to the test problem 1. The 
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associated absolute errors for   
 

 
, and 

 

  
, at       

           had been shown in Tables 1-6. Table 1 

showed the absolute errors associated with   
 

 
 at 

     . Here we observed that at spatial displacement 

     , the maximum absolute error between the 

numerically attained solution and the exact solution was 

not more than          . Whereas, the best obtained 

numerical value was at       with absolute error 

approximately          . Similar set of experiments 

for   
 

 
 at time step        and         , were 

performed in Tables 2-3. While, Tables 4-6 showed the 

results for   
 

  
 at time steps              and 

       , respectively. For all these experiments 

performed in Tables 2-6, same trend of results was 

obtained as in Table 1. The best observed accuracy, with 

  
 

 
, at        , was approximately           . 

From the first set of experiments, it was observed that 

numerical accuracy was dependent upon the time step. 

Smaller the time step resulted in better accuracy. It was 

observed that the step size did not make any considerable 

impact on the conclusion. 

Test problem 2: For the second set of experiments, the 

following second order linear homogeneous Klein-

Gordon equation was considered 

                                , 

with the initial conditions 

           ,                           , 

and the boundary conditions 

                                             . 

 The exact solution to the above problem was 

              . 

Table 7. Absolute errors at   
 

 
        

 

  Exact NPCSM Absolute Error 

0.2 0.102006676 0.106016935 4.0103E-03 

0.4 0.108107237 0.113991485 5.8842E-03 

0.6 0.118546522 0.124723925 6.1774E-03 

0.8 0.133743495 0.138365576 4.6221E-03 

Table 8. Absolute errors at   
 

 
         

 

  Exact NPCSM Absolute Error 

0.2 0.010200668 0.010289925 8.9257E-05 

0.4 0.010810724 0.010916891 1.0617E-04 

0.6 0.011854652 0.011970493 1.1584E-04 

0.8 0.013374349 0.013488458 1.1411E-04 

 

Table 9. Absolute errors at   
 

 
          

 

  Exact NPCSM Absolute Error 

0.2 0.001020067 0.001021153 1.0864E-06 

0.4 0.001081072 0.001082149 1.0771E-06 

0.6 0.001185465 0.001186644 1.1790E-06 

0.8 0.001337435 0.001338875 1.4398E-06 

 

 To illustrate the performance of the developed 

scheme, the same set of experiments for the test problem 

2 as shown in Tables 7-9 were repeated. It had been 

observed that the previous conclusion holds. The best 

observed accuracy was obtained by the combination of 

  
 

 
 at         at spatial displacement      , 

where the absolute error was approximately      
     . 

Test problem 3: Finally, the set of experiments for the 

following second order linear nonhomogeneous Klein-

Gordon equation was conducted 

                                    , 

with the initial conditions 

              ,                       , 

and the boundary conditions 

                                                   . 

 The exact solution to the above second order 

linear nonhomogeneous Klein-Gordon equation was 

                 . 
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Table 10. Absolute errors at   
 

 
        

 

  Exact NPCSM Absolute Error 

0.2 0.298502747 0.299325769 8.2302E-04 

0.4 0.489251759 0.491099662 1.8479E-03 

0.6 0.664475890 0.666858941 2.3831E-03 

0.8 0.817189508 0.819118800 1.9293E-03 

 

Table 11. Absolute errors at   
 

 
         

 

  Exact NPCSM Absolute Error 

0.2 0.208669164 0.208688041 1.8877E-05 

0.4 0.399418176 0.399455733 3.7558E-05 

0.6 0.574642307 0.574696039 5.3732E-05 

0.8 0.727355924 0.727415593 5.9669E-05 

 

Table 12. Absolute errors at   
 

 
          

 

  Exact NPCSM Absolute Error 

0.2 0.199669331 0.199669528 1.9759E-07 

0.4 0.390418342 0.390418731 3.8844E-07 

0.6 0.565642473 0.565643033 5.5955E-07 

0.8 0.718356091 0.718356862 7.7153E-07 

 

 The third set of experiments was performed to 

illustrate the performance of the developed scheme for 

the second order linear nonhomogeneous Klein-Gordon 

equation. Again, the best observed accuracy was obtained 

by the combination of   
 

 
 at        . Hence, the 

previous conclusion holds for second order linear 

nonhomogeneous Klein-Gordon as well.  

 In this research work, the finite difference 

approximations were used for time derivatives and non-

polynomial cubic spline for the spatial derivatives. 

Boundary functions through analytical solution were 

developed. Rashidinia et al. (2013) applied B-spline 

collocation approach to approximate the linear Klein-

Gordon equation. The   ,   -errors and root-mean 

square (RMS) of errors were calculated by Rashidinia. 

They made all the calculations with step sizes         

and        and obtained minimum errors        
                                for   ,   , and 

RMS, respectively, at      . Whereas, with developed 

technique, the absolute error was reduced to a minimum 

value of approximately           with       and 

       . Hesameddini and Shekarpaz (2012) applied 

wavelet collocation method and Legendre wavelets to 

approximate the numerical solution of Klein-Gordon 

equation. The results were constructed with   
         . Sweilam et al. (2012) used Legendre pseudo-

spectral method for the approximated solution of 

fractional Klein-Gordon equation and obtained a 

minimum error of            . Hariharan (2011) used 

Haar wavelet method to approximate the numerical 

solution of Klein-Gordon equation. At      and 

      the Haar method obtained a result of       
      accuracy. Izadkhan et al. (2013) applied a 

technique based on the interpolating scaling functions 

and Galerkin method to numerically solve the Klein-

Gordon equation. They obtained an accuracy of      
      at    . Han and Yin (2007) employed absorbing 

boundary conditions to obtain a numerical solution to the 

Klein-Gordon equation. The results were generated at 

different artificial boundaries namely           and 

   . The mesh sizes 
 

  
 

 

  
 
 

  
 

 

   
, and 

 

   
 were 

employed and a maximum accuracy of            was 

obtained at a step size of 
 

   
. On the other hand side, the 

scheme developed in this research work was much better 

and more efficient as an excellent accuracy was obtained 

with small of step sizes, like,   
 

 
 and 

 

  
. 

 It was observed that by reducing the step size to 

k = 0.00001 the best observed accuracy was close to the 

machine precision, i.e.,          . 

 The overall conclusion was that the performance 

of developed method was remarkably good when it was 

applied on homogeneous and nonhomogeneous linear 

partial differential equations and produced encouraging 

results which were very much close to the exact 

solutions. 



Pakistan Journal of Science (Vol. 67 No.4 December, 2015) 

 382 

REFERENCES 

Evans D. J. and W. S. Yousif (1991). A note on solving 

the fourth order parabolic equation by the AGE 

method. Int. J. Comput. Math., 40: 93-97. 

Grennier W. (1984). Relativistic Quantum Mechanics. 1
st
 

Ed. Springer. 

Han H. and D. Yin (2007). Absorbing boundary 

conditions for multidimensional Klein-Gordon 

equation. Journal of Mahani., 01(1): 29-45. 

Hariharan G. (2011). Haar wavelet method for solving 

the Klein-Gordon and Sine-Gordon equations. 

Int. J. Sci., 11(2): 180-189. 

Hesameddini E. and S. Shekarpaz (2012). Wavelet 

solutions of the Klein-Gordon equation. 

Commun. Math. Sci., 05(3): 743-764. 

Izadkhan S., M. Shahriari and B. N. Saray (2013). 

Galerkin and collocation methods for the 

solution of Klein-Gordon equation using 

interpolating scaling functions. Int. J. Sci., 

16(2): 113-124. 

Kaya D. (2005). An implementation of the ADM for 

generalized one dimensional Klein-Gordon 

equation. Appl. Math. Comput., 166: 426-433. 

Kumar D., J. Singh., S. Kumar and Sushila (2014). 

Numerical computation of Klein-Gordon 

equation arising in quantum field theory by 

HATM. Alexandra. Eng. J., 53(2): 469-474. 

Landua. R. H. (1996). Quantum mechanics. 2
nd

 Ed. 

Wiley. 

Mohyud-Din S. T. and A. Yildirim. Variational iteration 

method for solving Klein-Gordon equations. 

Appl. Math. Stat., 01: 35c05-35c10. 

Papamichael N. and A. J. Worsey (1981). A cubic spline 

method for the solution of a linear fourth order 

boundary value problems. J. Comput. Appl. 

Math., 07: 187-189. 

Pervaiz A., A. Ahmad., Z. Zafar and M. O. Ahmad 

(2014). Numerical solution of sixth order 

boundary value problems by applying non-

polynomial spline method. Pak. J. Sci., 66(2): 

110-116. 

Pervaiz A., Z. Zafar and M. O. Ahmad (2014). A non-

polynomial spline method for solving linear 

twelfth order boundary value problems. Pak. 

Academy. Sci., 51(2): 157-165. 

Pervaiz A. and M. O. Ahmad. (2015). Polynomial cubic 

spline method for solving fourth-order parabolic 

two point boundary value problems. Pak. J. Sci., 

67(1): 64-67. 

Ramadan M. A., T. S. El-Danaf and F. E.I. Alaal (2007). 

Application of non-polynomial spline approach 

to the solution of the Burger’s equation. Open 

Appl. Math. J., 01: 15-20. 

Rashidinia J., F. Esfahani and S. Jamalzadeh (2013). B-

spline collocation approach for solution of 

Klein- Gordon equation. Int. J. Math. Comp., 

03(1): 25-33. 

Rashidinia J. and R. Mahmoodi (2008). Non-polynomial 

cubic spline methods for the solution of 

parabolic equations. Int. J. Comput. Math., 

85(5): 843-850. 

Rashidinia J., R. Muhammadi., R. Jalilian and M. 

Ghasemi (2008). Convergence of cubic spline 

approach to the solution of a system of boundary 

value problems. Appl. Math. Comp., 192: 319-

331. 

Rashidinia J. and R. Mahmoodi (2008). Non-polynomial 

cubic spline methods for the solution of 

parabolic equations. Int. J. Comput. Math., 

85(5): 843-850. 

Sweilam N. H., M. M. Khader and A. M. S. Mahdy 

(2012). On the numerical solution for the linear 

fractional Klein-Gordon equation using 

Legendre preudospectral method. Int. J. Math. 

Comput. Research., 2: 1-10. 

Taiwo O. A. and O. M. Ogunlaran (2011). A non-

polynomial spline method for solving linear 

fourth order boundary value problems. Int. J. 

Phy. Sci., 06(13): 3246-3254. 

Wazwaz A. M. (2009). Partial Differential Equations and 

Solitary Wave Theory.  Springer. 370-377 p. 

Yusufoglu E. (2008). The variational iterated method for 

studying the Klein-Gordon equation. Appl. 

Math., 21(7): 669-674. 

 


