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ABSTRACT: Optimal design of Oxygen production system along with production rate, pressure in 

storage tank, compressor power and storage tank volume constraints were formulated in this study. In 

formulated optimization Oxygen production system the constraints were handled by using the exterior 

penalty functions. The derivative free methods were used for the optimization of this formulated 

problem. The methods were basically designed for unconstrained optimization problems. The optimum 

results of the Oxygen production optimization model were obtained by using MATLAB programming 

environment which demonstrated the effectiveness and applicability of the model. It was observed that 

the results of Nelder-Mead method were better than Hooke-Jeeves method. Nelder-Mead method was 

more efficient with respect to its function value and its number of function evaluations. 
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INTRODUCTION 

 The optimization problems arise in almost all 

areas of real life like manufacturing, scheduling, business 

and engineering. By using optimization techniques the 

best solutions of the problems are obtained by utilizing 

minimum amount of limited resources (Ronald, 2002).  

 Optimization techniques are mainly divided into 

two categories i.e. Derivative Based Methods (DBMs) 

and Derivative Free Methods (DFMs) which are being 

frequently used in practical optimization (Tabassum et 

al., 2015). In this study the focus is on two direct search 

methods, namely, Nelder-Mead (NM) method and 

Hooke-Jeeves (HJ) method as has been reported by 

(Edger et al., 1988, William, 2001, Arora, 2004 and Isaac 

and Makoto, 2010). These methods are basically 

designed for solving un-constrained optimization 

problems. However these methods can also be applied to 

constrained optimization problems by changing them into 

unconstrained optimization problems. A traditional way 

for this purpose is the use of penalty function approach. 

Penalty functions depend on degree of constraint 

violation and the penalty factor which raises the objective 

function value for every infeasible solution and lowers 

the penalized objective function value for every solution 

nearer to the feasible region (Deb, 2003). 

 In the past when the derivatives of functions 

were taxing to calculate, the direct search methods were 

popular, but recently, the researchers have developed 

numerous tools for robust and automatic differentiation 

as well as modeling languages that compute derivatives 

automatically (Lagarias et al., 1998 and Price et al., 

2002). In spite of all this, direct search method has its 

own importance. Particularly the maturation of 

simulation-based optimization has made it difficult to use 

derivative based method. Moreover, DBM cannot be 

applied to the problems in which the objective functions 

are not numeric in nature. An example of such problems 

is like optimal configuration of N-Queens on a square 

chess-board problem (Ali el al., 2015). The researchers 

have proposed a verity of DFM for diverse problems of 

practical optimization (Hooke and Jeeves, 1961, Joines 

and Houck, 1994 and Coello, 1999).    

 To change the constrained optimization into un-

constrained one, by adding or subtracting the values from 

the objective functions is reported by (Deb, 2005). 

 In this script a mathematical model of Oxygen 

production system for minimum cost is reformulated and 

selected as a test case for the capabilities of NM and HJ 

methods. So far no such applications of these methods to 

such a challenging engineering optimization problem 

have been found. For selecting the best method there is a 

necessity to conduct comparative studies of their 

potential applications to modern world problems, like the 

one formulated in this study.  
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MATERIALS AND METHODS 

 The motivation for this research was to modify 

Oxygen production model. The derivative free methods 

were used for the optimization of Oxygen production 

model. These methods were basically designed for 

unconstrained optimization problems. In formulated 

optimization Oxygen production model the constraints 

were handled by using exterior penalty functions. 

Hooke-Jeeves Method: For an N-dimensional problem 

HJ method required an initial point x0, a set of N linearly 

independent search directions vi, step-length parameters 

δi > 0 and a parameter µ >1. The method used two types 

of moves given below: 

Exploratory Move: This move was made on the current 

point by investigation along each direction according to 

the following formula: 

xnew = x0 ± δi vi   for all i= 1, 2, 3, …, N. 

 

Fig-1. Successful exploratory move 

 

Pattern Move: When exploratory move was completed 

and was accomplished successfully then pattern move 

was executed, by jumping from present base point along 

with a direction connecting and a new point was found. 

Once a pattern move was established it was possible to 

move as much as allowed. An enlargement parameter , 

  1, was used for this purpose. The pattern direction 

was found by the formula applied as  d =  zE – zb. 

Therefore the new point, through pattern move, was 

found as given below           

y b =  z E +   d  =  zE +   ( zE – zb ). 

Nelder-Mead Simplex Method: While considering the 

initial simplex with three initial points i.e.  y
0
 = Best 

Point, y
1
 = Good Point, y

2
 = Worst Point. Take the 

centroid y
C
 of best and good points. Reflect the worst 

point through centroid, the y
r
 becomes the new point, 

which having equidistance from y
C
 to y

2
. In this method 

there were several operations to be performed. Reflection 

occurred when y
1
 ≥ y

r
 > y

0
.  

 

 
Fig-2: Pattern move direction 

 

Mathematically, the reflected point y
r
 was given as 

                   
and expansion occurred when y

1
 ≥ y

0
 > y

e
.  

Mathematically, the expanded point y
e
 was given as

                   
In contraction when reflection point lies between the 

good and best vertex and it was generated two types. 

Outside contraction occurred when y
2
 ≥ y

r
 > y

1
.  

Mathematically, the expanded point y
OC

 was given as 

                     
Inside contraction occurred when y

r
 ≥ y

2
. 

Mathematically, the expanded point y
iC

 was given as

                   . If no one from the 

above condition was satisfied then shrink was produced. 

 
Fig-3: Steps of Nelder–Mead method 

 

Oxygen production system: In this problem the prime 

objective was to minimize the cost of oxygen furnace. 

This oxygen furnace was used in chemical reactor for the 

supply of pure oxygen. Oxygen production system 

(Ravindran et al, 2006) contained oxygen plant, 

compressor and storage tank for oxygen furnace. 

Different kinds of variables were assigned and different 

kinds of constraints were generated, therefore the oxygen 

demanded varied with respect to time interval shown in 

Figure 4. Here t1 was time interval for rate of low demand 
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D0 and t2 - t1 time for rate of high demand D1. Oxygen 

plants were designed to provide oxygen at a fixed rate. 

 

  {
                    
                     

} 

Fig-4: Cycle of demand 

 

 
Fig-5:  Oxygen production design 

 The capacity of oxygen plant = D1.  

 Assumptions: Oxygen furnace and demand 

cycle were fixed, no external factors were imposed, 

storage tank had standard design and compression of 

ideal gas was isothermal.  

 Total annual cost = oxygen production cost + 

compressor operating cost + compressor cost + storage 

vessel  

The model consisted on design equations that narrated 

independent variables (Bett et al, 1975). 

Independent variables: Oxygen plant production rate F,  

The compressor H,  

Storage tank design capacities V,  

The maximum tank pressure p.  

Imax = maximum stored oxygen  

By using law of corrected gas as   
    

 

  

 
  

 where  R = gas constant,  

T = gas temperature,  

ʑ = compressibility factor,  

M = molecular weight of Oxygen.  

From Figure 4, maximum oxygen = area under the 

demand curve between t1 and t2 and D1 and F. Thus, 

                                  (1) 
Put the value Imax in above equation 

  
                      

 
 
     

 
   (2) 

As we now that the gas flow rate = 
(     –   ) (     –     )

   
  

   
                          

   
 

   

       
    (

 

   
)  (3) 

where  k1 = unit conversion factor,  

k2 = compressor efficiency,  

                             = oxygen delivery pressure. 

Rate of Oxygen plant F was sufficient, to supply the total 

demand of oxygen 

  
                                

   
          (4) 

Maximum pressure of tank > delivered Oxygen pressure 

       (5) 

Oxygen plant annual cost was         (
  

    
)      

      (6) 

where a1 and a2 were empirical constants. 

 empirical constants = (fuel+ water+ labor) costs for 

plants.  

The capital cost for storage vessels  

By using power correlation law, as               
     

 7) 

where b1 and b2 were empirical constants. 

Similarly capital compressors cost attained from a 

correlation was 

                     (8) 

Whereas compressor power cost was approximately = 

b5t1H 

 where b5 was the power cost.  

Total cost function  

                                  
              

           (9) 
where                   = number of cycles per year 

                              =annual cost factor. 

 To minimize equation (9) represented complete 

design optimization problem that contained a suitable 

value of F, V, H, and p, cycle parameters were (N, D0, D1, 

t1, and t2), cost parameters were (a1, a2, b1 to b5, and d) 

and physical parameters were (T,   , k2, ʑ and M) (Jen et 

al, 1968). 

By using the new variables:  

z1= production rate of oxygen plant,  

z2= pressure in storage tank,  

z3= compressor power and  

z4= storage tank volume.  

Non- linear programming model of oxygen design 

problem was as under 

                           
       

   
         

Subject to 
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  (
 

  
) 

       
   

 

              

  
 

z1, z2, z3, z4 ≥ 0 

Table 1. Different parameters for Oxygen supply 

system 

 

Value of 

Cycle 

Parameters 

Cost 

Parameters 

Physical 

Parameters 

N = 1 a1= 61.8 T= 20
o
 

Do = 2.5 a2= 5.72        

D1 = 40 b1= 0.0175 k2=  0.5 

t1 = 0.6 b2= 0.85 M=31.9999 

t2 = 2.5 b3= 0.0094           

 b4= 0.75  

 b5= 0.006  

 d= 1  

 

The final non-linear programming model of oxygen 

design problem became as 

                        
          

             
     

          

Subject to 

         

        

         
            

   
  (

  

   
)  

           
            

  
 

 z1, z2, z3, z4 

≥ 0 

By u 

sing penalty function (Deb, 2005) 

P( x ) = r ( max [ 0, g 1 ( x ), g 2( x ), g 3 ( x ), g 4 ( x ) ] ) 

                                  
     

        
              + 100 [max (0, [        ], 

[       ], [          
            

   
  (

  

   
)], [   

      
            

  
])] 

RESULTS AND DISCUSSION 

 Direct search methods had been popular because 

of their simplicity, flexibility, and reliability (Lewis et al, 

2000). These methods had been shown to satisfy the first-

order necessary conditions for a minimizer i.e., 

convergence to a stationary point (Lucidi and 

Mciandrone, 2002). It seemed remarkable that the given 

direct search methods neither required explicit derivative 

nor estimated derivative information. In most of the 

direct search methods a set of directions that span the 

search space was sufficient information to investigate the 

local behavior of the function (Rios and Sahinidis, 2012). 

To reduce the step length safely the set of directions had 

been queried (Nelder and Mead, 1965). 

 As per study conducted by (Hellinckx and 

Rijckeart, 1972 and Jen et al, 1968) have reported the 

solution of the above formulated problem with different 

setting of parameters. The Oxygen production system 

was solved by using geometric programming approach 

considering smaller values of the parameters. The best 

solution of the problem also gave the minimum cost of 

$173.76 (Hellinckx and Rijckeart, 1972). The same 

problem was solved by using gradient based method with 

a minimum cost of 173.83$ as reported by Jen et al, 

(1968). In this study the problem was solved by using 

two derivative free methods. The comparisons of the 

solutions found in this study are presented in table-2. 

 

Table 2. Comparison of results 

 

Sr. No. 
Power cost 

$/(HP-HR) 
Production Rate 

Maximum 

Pressure 

Minimum power cost 

Jen HJ NM 

1 0.0015 17.5 802.82062 172.21 172.11700 172.11705 

2 0.003 17.5 658.19221 172.85 172.74737 172.74745 

3 0.006 17.5 473.69271 173.83 173.74617 173.74621 

4 0.009 17.5 361.23119 174.52 174.45393 174.45394 

5 0.012 17.5 283.80233 175.95 174.91330 174.91335 

6 0.018 17.500001 200.00000 175.07 175.06747 175.06741 

7 0.024 17.500001 200 175.07 175.06 175.0601 

 

 The previous studies witness that NM method is 

comparatively a low computation cost method. On the 

other hand HJ method provides guaranteed convergence 

for a number of differentiable functions (Dimitri et al, 

2000). But the present study shows a different picture of 

the methods. It was observed that the solutions which are 

shown in table 2 at serial number 2 found by HJ and NM 

methods were approximately 0.059% better than the 

solution of Jen which was the maximum percentage in 

the results. It was also observed that the solutions which 
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were shown in table 2 at serial number 6, 7 found by HJ 

and NM methods were approximately 0.006% better than 

the solution of which was the minimum percentage in the 

results. These comparisons had witnessed that 

Determinists DSMs like HJ and NM methods were yet 

better choices for solving such exponential type 

optimization problems in engineering design but HJ 

method is more reliable. 

 

 
Fig-6. Comparison of function evaluation of NM and HJ methods 

 

 HJ method terminated when the step length fell 

below 10
-9

 and NM terminated when the maximum of 

200×No of variables function evaluations were carried 

out. At these termination criteria the function evaluations 

by HJ method were smaller than those of NM method for 

the power cost rates (3-7) but were comparatively higher 

for (1-2). It was contradictory to the reported minimum 

computational cost of NM method. It was concluded that 

on the radical objective functions like the modeled one, 

HJ method may be a better and low cast choice.    

 

Table 3. Comparison of Function Evaluations between 

NM Method and HJ Method. 

 

Power cost 
Function Evaluations 

NM Method HJ Method 

0.0015 346 392 

0.003 358 407 

0.006 399 267 

0.009 312 307 

0.012 362 332 

0.018 401 342 

0.024 400 342 

 

 The above table also showed that when the 

power cost was small the number of function evaluations 

of NM method was less than that of HJ method and when 

the power cost increased gradually the performance of HJ 

method was getting better than NM method.   

 For optimum results of Oxygen design problem, 

a general-purpose solver was required. For numerical 

simulation of the oxygen design model, the programming 

environment of MATLAB was found quite supportive 

due to availability of a plenty of built-in functions. 

Another important advantage of MATLAB was the fact 

that parameters were easily settled for handling 

constraints.  

Conclusion: The outcome performances of Hooke-

Jeeves and Nelder-Mead methods experimented via a 

number of initial guesses were carried out on formulated 

Oxygen production system. It was concluded that 

performance of HJ method was promising with respect to 

its efficiency of solving such a problem with minimum 

computational efforts as compared to those of NM 

method. Through this work it was recommended that in 

any environment HJ method was a better choice as 

compared to the class of methods involving NM method. 
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