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ABSTRACT: Vibration characteristics of a cylindrical shell composed of three layers are 

investigated.  The inner and outer layers of cylindrical shell are functionally graded materials whereas 

middle layer is of isotropic material. Love shell equations are used to study the vibration problem. The 

expressions for moduli of the Winkler and Pasternak foundations are combined with the shell 

dynamical equations. The wave propagation technique is used to solve the present shell problem. A 

number of comparisons of numerical results are performed to check the validity and accuracy of the 

present approach. 
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INTRODUCTION 

 The shell vibration problem is an extensively 

studied area of research in the structural dynamics. 

Numerical solutions of shell vibration problem started to 

come out in thirties of twentieth century and were 

presented by (Fl gge, 1943). (Leissa, 1993) compared 

various thin shell theories and introduced different 

eighth-order system of differential equations in terms of 

different differential operators. (Blevins, 1979) gave a 

detailed review of formulas for shell structures. 

(Forsberg, 1964) carried out an extensive numerical 

analysis to demonstrate the significance of the effects of 

boundary conditions on the free vibration characteristics 

of circular cylindrical shells. (Goldman, 1974) evaluated 

the natural frequencies as well as mode shapes of thin-

walled cylindrical shells. He used exponential function 

for axial modal dependence with clamped-clamped end 

conditions. (Loy et al. 1998) investigated the vibrations 

of functionally graded material cylindrical shells, made 

up of FG material composed of stainless steel and nickel. 

The purpose of work was to examine natural frequencies, 

influence of the constituent volume fractions and effects 

of configurations of constituent materials on their 

frequencies. (Pardhan et al. 2000) studied the vibrations 

of functionally graded material (FGM) cylindrical shell 

structured from stainless steel and zirconia. Influence of 

boundary conditions and volume fractions on natural 

frequencies of FGM cylindrical shell was studied. (Zhang 

et al. 2000) analyzed the vibrations of cylindrical shells 

employing wave propagation approach. Comparison of 

numerical results obtained by using the wave propagation 

approach and numerical finite element method were 

executed. (Naeem and Sharma, 2000) have employed 

Rayleigh-Ritz method to predict natural frequencies for 

thin cylindrical shells using Ritz polynomial for axial 

model dependence.  

 (Najafizadeh and Isvandzibaei, 2007) studied the 

vibrations of thin-walled cylindrical shells with ring 

supports composed of functionally graded material 

comprised of stainless steel and nickel. (Shao and Ma, 

2007) investigated free vibration analysis of laminated 

cylindrical shells with arbitrary classical end conditions. 

Strain displacement relations from Love’s shell theory 

were used in the study. (Iqbal et al. 2009) applied wave 

propagation approach to analyze vibrations of 

functionally graded material circular cylindrical shells. 

This methodology was very easy to apply. Axial model 

dependence was carried out by exponential functions. 

(Arshad et al. 2010) studied vibration of bi-layered 

cylindrical shells with layers of different materials. One 

layer was made of functionally graded material and the 

other layer of isotropic material. Frequencies were 

evaluated for long, short, thick and thin cylindrical shells 

by varying non dimensional geometrical parameters, 

length-to-radius and thickness-to- radius ratios for a 

simply supported boundary condition. Also (Arshad et al. 

2010) investigated vibration analysis of bi-layered 

functionally graded cylindrical shells. In this case, both 

layers are composed of functionally graded materials and 

the thickness of shell layers is considered to be equal and 

constant.  (Shah et al. 2010) have studied vibrations of 

functionally graded cylindrical shells based on elastic 

foundations. They amended the equations of functionally 
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graded cylindrical shells by inducting the modulii of the 

Winkler and Pasternak foundations. Recently (Shah et al. 

2010) presented vibration characteristics of cylindrical 

shells which was filled with fluid and was put on the 

elastic foundations. (Naeem et al. 2010) studied the 

vibration frequency characteristics of functionally graded 

cylindrical shells using the generalized differential 

quadrature method. The method was founded on the 

approximation of the derivatives of the unknown 

functions involved in differential equations at the mesh 

points of the solution domain. It was a sophisticated 

technique that gives accurate and robust results. A 

number of comparisons were done to check the 

effectiveness, robustness and accuracy of the presented 

method.  

Formulation of the Shell Problem: A thin- walled 

cylindrical shell with the geometrical dimensions: length 

L, thickness h and mean radius R is shown in Fig. 1. An 

orthogonal coordinate system  is considered to 

be at the mid surface of the shell whereas x,  and z 

stand for the axial, circumferential and radial coordinates 

respectively. Young’s modulus E, the Poisson ratio ν and 

the mass density ρ denote material parameters of the 

shell. The axial, circumferential and radial displacement 

deformations are represented by u , v  

and w  respectively with regard to the shell 

middle surface. 

 The equations of shell motion from the Love 

shell theory are  in a differential operator form as: 

 (1) 

 (2) 
2

2
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where  state the differential operators 

with regard to x and  and are given as 

’ 
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, 
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’ 

, 
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 where G  stands for Pasternak elastic foundation 

and K for the Winkler foundation modulus.  The 

expression for the differential operator  is: 

 (5) 

The following modal displacement shape functions are 

adopted to separate the time and space variables 

u  

v  

w  (6) 

in the longitudinal, circumferential and transverse 

directions respectively. The constants A, B and C are the 

amplitudes of vibrations in the x,  and z directions 

respectively, n is the number of circumferential waves 

and stands for axial wave number that is associated 

with a boundary condition is axial wave number given for 

four types of boundary conditions in Table 1: 

 

Table 1 

 

Boundary conditions Wave numbers 

Simply supported - simply supported 
 

Clamped – clamped 
 

Clamped - simply supported 
 

Clamped – free 
 

 These axial wave numbers  are selected to 

satisfy boundary conditions at both edges of a cylindrical 

shell.  denotes the natural angular frequency for the 

cylindrical shell. 

Making substitution for the displacement functions u, v 

and w from the expressions (6) in system of equations (1-

3), the shell algebraic equations are written as: 

 (7) 

 (8) 

 (9) 

 After the arrangement of terms, the algebraic 

simultaneous equations (7)-(9) are written in matrix 

notation as: 
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 (10) 

where 
( , , , )ijC i j 1 2 3

 are coefficients of stiffness matrix 

and their values are given below: 
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where  ,  and  stand for 

extensional, coupling and bending stiffness respectively 

and defined as: 

  (12) 

 denotes the mass density per unit length and is defined 

as: 

 (13) 

 For forming the shell frequency equation, the 

determinant of the matrix coefficients is vanished for 

non-trivial eigen-value of the shell frequency. Either the 

eigen-value problem obtained above is solved using 

computer program or the determinant is expanded and the 

frequencies equation is achieved in the form of 

polynomial equation involving  .  

RESULTS AND DISCUSSION 

 Numerous comparisons of numerical results for 

isotropic as well as functionally graded material 

cylindrical shells are carried out in order to examine 

validity, efficiency and accuracy of wave propagation 

approach. The numerical results for following four 

boundary conditions are calculated and compared with 

those found in the open literature. 

i. simply supported - simply supported (SS-SS) 

ii. clamped - clamped (C-C) 

iii. clamped - simply supported (C-SS) 

iv. clamped - free (C-F) 

Simply Supported Cylindrical Shells: In Table 2, the 

non-dimensional frequency parameter 

ER /)1( 2    for an isotropic cylindrical shell is 

compared with those ones obtained by Naeem and 

Sharma. (1999).The simply supported boundary 

conditions are described on shell ends. In this 

comparison, the shell parameters, length-to-radius ratio 

and thickness-to-radius ratio are taken as:  and  

 respectively. The axial mode is assumed to 

be and the circumferential wave numbers n are 

chosen from 1-10.  Material properties of the shell are 

mass density ( ), Poisson’s ratio ( ) and Young’s 

modulus (E) and their values are given as: kg/m
3
 

,  and  N/m
2
.  

 

Table 2 Comparison of frequency parameter 

ER /)1( 2  
 for a SS-SS cylindrical 

shell ( , ) 

 

n (Naeem and 

Sharma 1999) 

Present % 

Difference 

1 0.140641 0.140642 0.000 

2 0.054323 0.054324 0.002 

3 0.027074 0.027075 0.004 

4 0.017776 0.017767 -0.051 

5 0.017088 0.017074 -0.082 

6 0.021303 0.021304 0.005 

7 0.028089 0.028082 -0.025 

8 0.036469 0.036470 0.003 

9 0.046174 0.046171 -0.006 

 

Clamped Cylindrical Shells: Table 3 shows comparison 

of non-dimensional frequency parameter  for a 

cylindrical shell executing vibration with clamped-

clamped boundary conditions. The present values are 

compared with those in the reference: Zhang et al. (2001) 

for  and  where and 

the circumferential wave numbers n are assumed to be 1-

5.  

Clamped-Simply Supported Cylindrical Shells: Table 

4 displays a comparison of frequency parameters 
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ER /)1( 2  
 determined by the present 

method with ones determined by Naeem et al.(2009) for a 

clamped-simply supported cylindrical shell. A good 

agreement is obvious between the two sets of results.  

Table 3 Comparison of values of the frequency 

parameter 
ER /)1( 2  

 for clamped-

clamped (C-C) cylindrical shells 

 
 

m n (Zhang et al. 

2001b) 

Present % 

Difference 

1 1 0.03487 0.03488 0.02868 

 2 0.01176 0.01176 0.00000 

 3 0.007083 0.007084 0.014118 

 4 0.009016 0.009017 0.011091 

 5 0.01377 0.01377 0.00000 

2 1 0.08742 0.08742 0.00000 

 2 0.03155 0.03155 0.00000 

 3 0.01586 0.01586 0.00000 

 4 0.01224 0.01224 0.00000 

 5 0.01482 0.01482 0.00000 

 

Table 4 Comparison of frequency parameter 

ER /)1( 2  
 for a clamped - simply 

supported cylindrical shells 

 
 

n (Naeem et al. 2009) Present %Difference 

1 0.024029 0.024721 2.88 

2 0.008283 0.008282 -0.01 

3 0.005844 0.005852 0.14 

4 0.008705 0.008710 0.05 

5 0.013678 0.013684 0.04 

6 0.019973 0.019979 0.03 

7 0.027459 0.027466 0.02 

8 0.036111 0.036118 0.02 

9 0.045984 0.045929 -0.12 

10 0.056889 0.056897 0.01 

 

Clamped-Free Cylindrical Shells: Table 5 illustrates 

frequency parameters  for a clamped-free shell. The 

analytical results were evaluated by Naeem et al. (2009) 

for axial wave number . There is once again an 

excellent agreement between the two sets of analytical 

results.  

 From the previous comparisons of numerical 

results for the shell problems, it is noticed that the 

method employed here is very efficient, valid, fast and 

provides accurate results.  

 

Table: 5 Comparison of frequency parameter 

ER /)1( 2    for clamped-free (C-F) 

cylindrical shell ( ,  mm,  

mm,  mm, N/m
2
, 

,  Kg/m
3
) 

 

n (Naeem et al. 

2009) 

Present % 

Difference 

1 0.0348 0.0256 -26.44 

2 0.0381 0.0373 -2.080 

3 0.1022 0.1024 0.196 

4 0.1954 0.1958 0.205 

 

Three-Layered Cylindrical Shells: A number of results 

for the proposed three-layered functionally graded 

cylindrical shells are determined for various sets of 

material. The inner and outer layers of the shell are 

comprised of functionally graded material whereas the 

middle layer is assumed to be isotropic as shown in Fig.1 

Material properties of shell are represented by Young’s 

modulus (E), Poisson’s ratio ( ) and mass density ( ). In 

general, vibration characteristics are mostly influenced by 

Young’s modulus. In this study, the Poisson’s ratio is 

presumed to be constant for functionally graded materials 

whereas the Young’s modulus depends on intrinsic 

thickness variable (z) as well as the Young’s modulus of 

constituent materials forming functionally graded layers. 

Here two configurations of a cylindrical shell are 

considered to suggest with regard to the shell layer 

thickness. In first configuration, the thickness of each 

layer is supposed to be of h/3 while in the second 

configuration, the thickness of each of the inner and outer 

layers are of h/4 and that of middle layer is of h/2.  

 The stiffness moduli  ,  and  are 

modified according to the thickness of material layers 

when inner and outer layers are functionally graded and 

middle is isotropic as 

 

 

 (14) 

 where  and in(FG), m(isotropic) 

and out(FG) are associated with inner functionally 

graded, middle isotropic and outer functionally graded 

layers of cylindrical shell respectively. Here by 

considering the constituent material of stainless steel for 

isotropic layer and also the FG layers are structured from 

two kinds of materials, nickel and zirconia. In this way, 

four types of shells are obtained and are listed in the 

following Table 6  
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Table 6. Description of cylindrical shells with 

isotropic middle layer 

 

Types of 

Shell 

Inner FGM 

Layer 

Isotropic Outer FGM 

Layer 

Type I Nickel - 

Zirconia 

Stainless 

Steel 

Nickel - 

Zirconia 

Type II Zirconia - 

Nickel 

Stainless 

Steel 

Zirconia - 

Nickel 

Type III Nickel - 

Zirconia 

Stainless 

Steel 

Zirconia - 

Nickel 

Type IV Zirconia - 

Nickel 

Stainless 

Steel 

Nickel - 

Zirconia 

 

 Material properties of isotropic materials: Steel 

and Aluminium are given in Table 7 whereas the material 

properties of the constituent materials forming 

functionally graded layers are listed in Table 8 

 

Table 7. Material properties of isotropic materials  

 

Isotropic  E(N/m
2
) Poisson 

ratio( ) 
Density  

(Kg/m
3
) 

Stainless Steel 68.95E+09 0.315 2.7145E+03 

Aluminium 2.1E+11 0.28 7.8E+03 

 

Table 8. Material properties of Nickel and Zirconia 

 

FGM E(N/m
2
) Poisson 

ratio( ) 

Density  

(Kg/m
3
) 

Nickel 2.05098E+11 0.3100 8900 

Zirconia 1.6806296E+11 0.297996 5700 

 

 
Fig.1 Geometry of three layered cylindrical shell 

Frequency Analysis of cylindrical Shells: Tables 9-12, 

represent variations of natural frequencies (Hz) for Type 

I, II, III and IV cylindrical shells. Here the middle layer is 

supposed to be of isotropic and an outer and inner layer 

of the shell consists of functionally graded materials. 

Type I & III cylindrical shells have the approximate same 

frequency values whereas Type II & IV cylindrical shells 

have equal vibration frequencies. This shows that the 

interchange of the functionally graded materials forming 

the outer layers of the shell do not affect the frequency. 

Table 9. Variation of natural frequencies (Hz) of a 

simply supported- simply supported three-

layered (with isotropic middle layer) 

cylindrical shell on elastic foundations ( , 

, m, m, m, 

, N-m,  N-m) 

 

n Type I Type II Type III Type IV 

1 7696.81 7671.14 7696.67 7671.28 

3 10990.1 10951.1 10989.9 10951.4 

4 13269.6 13223.3 13269.3 13223.7 

5 15720.2 15665.7 15719.8 15666.2 

 

Table 10 Variation of natural frequencies (Hz) of a 

clamped-free three-layered (with isotropic 

middle layer) cylindrical shell on elastic 

foundations ( , , m, m, 

m, ,  N-m, 

 N-m) 

 

n Type I Type II Type III Type IV 

1 10676.7 10645.4 10676.5 10645.6 

2 11603.3 11562.0 11603.0 11562.3 

3 13161.4 13114.5 13161.1 13114.8 

4 15110.3 15057.2 15110.0 15057.6 

5 17301.4 17241.7 17301.0 17241.6 

 

Table 11. Variation of natural frequencies (Hz) of a 

clamped- simply supported three-layered 

(with isotropic middle layer) cylindrical shell 

on elastic foundations ( , , 

m, m, m, , 

 N-m,  N-m) 

 

n Type I Type II Type III Type IV 

1 9159.33 9130.67 9159.13 9130.88 

2 10262.3 10225.2 10262.1 10225.4 

3 12013.2 11970.3 12012.9 11970.6 

4 14126.1 14076.6 14125.8 14077.0 

5 16449.7 16392.6 16449.3 16393.0 

 

Table 12 Variation of natural frequencies (Hz) of a 

clamped-free three-layered (with isotropic 

middle layer) cylindrical shell on elastic 

foundations ( , , m, m, 

m, , N-m, N-m) 

 

n Type I Type II Type III Type IV 

1 5159.96 5141.50 5159.89 5141.57 

2 7082.46 7057.42 7082.30 7057.58 

3 9471.44 9438.61 9471.19 9438.86 

4 12040.0 11998.5 12039.7 11998.9 

5 14694.3 14643.8 14693.9 14644.2 
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 Fig.2 represents variation of natural frequency 

(Hz) for the three layered cylindrical shell with boundary 

conditions SS - SS, C - C, C - SS and C - F versus the 

axial mode . The frequency increases 

linearly with the axial mode (m) for each boundary 

condition.  The frequency is the highest for clamped-

clamped condition followed by clamped – simply 

supported, simply supported – simply supported, and 

clamped - free. This behaviour is due to the constraints 

involved in a condition. 

 

 
Fig. 2 Variations of natural frequencies (Hz) for the 

three layered cylindrical shell when 

 
 

Concluding Remarks: In this study, vibration 

characteristics of three-layered cylindrical shells are 

investigated. In the configuration, outer and inner layers 

are of functionally graded layers whereas the middle 

layer is isotropic. This forms a combination of isotropic 

and functionally graded layers. In a shell thickness 

direction, material composition of a functionally graded 

material is controlled by volume fraction law. Love shell 

dynamical equations are considered to describe the 

vibration problem. Pasternak and Winkler foundations 

are attached in the transverse direction. Wave 

propagation approach is applied to frame the shell 

frequency equation for a cylindrical shell in the eigen 

value form. MATLAB programs are written to extract 

vibration frequencies. It is observed that frequency 

increases with increasing values of circumferential wave 

number n. It is seen that natural frequencies of Type I 

cylindrical shell are identical to that of Type III 

cylindrical shell whereas natural frequencies of Type II 

and Type IV coincide with each other. It is concluded 

that frequency is the highest for clamped-clamped 

condition followed by clamped – simply supported, 

simply supported – simply supported, and clamped - free. 

This behaviour is due to the constraints involved in a 

condition. 
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