Pakistan Journal of Science (Vol. 65 No. 2 June, 2013)

VIBRATION ANALYSIS OF THREE-LAYERED FUNCTIONALLY GRADED
CYLINDRICAL SHELLS WITH ISOTROPIC MIDDLE LAYER RESTING ON WINKLER
AND PASTERNAK FOUNDATIONS

A. G. Shah, M. N. Naeem?, A. Ali*, T. Mahmood?, S. H. Arshad®

Department of mathematics, Govt. Post Graduate College Jhang, Jhang 35200, Pakistan
'Department of mathematics, G. C. University Faisalabad, Faisalabad 38000, Pakistan
Department of mathematics, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
®*Department of Civil Engineering, Igra National University Peshawar, Peshawar 25000, Pakistan
Corresponding Author’s Email: aghafarshah@yahoo.com

ABSTRACT: Vibration characteristics of a cylindrical shell composed of three layers are
investigated. The inner and outer layers of cylindrical shell are functionally graded materials whereas
middle layer is of isotropic material. Love shell equations are used to study the vibration problem. The
expressions for moduli of the Winkler and Pasternak foundations are combined with the shell
dynamical equations. The wave propagation technique is used to solve the present shell problem. A
number of comparisons of numerical results are performed to check the validity and accuracy of the
present approach.
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INTRODUCTION approach and numerical finite element method were
executed. (Naeem and Sharma, 2000) have employed

The shell vibration problem is an extensively Rayleigh-Ritz method to predict natural frequencies for

studied area of research in the structural dynamics.  thin cylindrical shells using Ritz polynomial for axial
Numerical solutions of shell vibration problem started to model depen_der_lce. o _
come out in thirties of twentieth century and were (Najafizadeh and Isvandzibaei, 2007) studied the

il ) vibrations of thin-walled cylindrical shells with ring
presented by (FI gge, 1943). (Leissa, 1993) compared supports composed of functionally graded material
various thin shell theories and introduced different comprised of stainless steel and nickel. (Shao and Ma,
eighth-order system of differential equations in terms of  2007) investigated free vibration analysis of laminated
different differential operators. (Blevins, 1979) gave a cylindrical shells with arbitrary classical end conditions.
detailed review of formulas for shell structures. Strain displacement relations from Love’s shell theory
(Forsberg, 1964) carried out an extensive numerical were used in the study. (Igbal et al. 2009) applied wave
analysis to demonstrate the significance of the effects of propagation approach to analyze vibrations of
boundary conditions on the free vibration characteristics  functionally graded material circular cylindrical shells.
of circular cylindrical shells. (Goldman, 1974) evaluated This methodology was very easy to apply. Axial model
the natural frequencies as well as mode shapes of thin-  dependence was carried out by exponential functions.
walled cylindrical shells. He used exponential function (Arshad et al. 2010) studied vibration of bi-layered
for axial modal dependence with clamped-clamped end cylindrical shells with layers of different materials. One

conditions. (Loy et al. 1998) investigated the vibrations layer was made of functionally graded material and the
of functionally graded material cylindrical shells, made other layer of isotropic material. Frequencies were
up of FG material composed of stainless steel and nickel.  evaluated for long, short, thick and thin cylindrical shells
The purpose of work was to examine natural frequencies, by varying non dimensional geometrical parameters,
influence of the constituent volume fractions and effects length-to-radius and thickness-to- radius ratios for a

of configurations of constituent materials on their  simply supported boundary condition. Also (Arshad et al.
frequencies. (Pardhan et al. 2000) studied the vibrations 2010) investigated vibration analysis of bi-layered

of functionally graded material (FGM) cylindrical shell functionally graded cylindrical shells. In this case, both
structured from stainless steel and zirconia. Influence of layers are composed of functionally graded materials and
boundary conditions and volume fractions on natural the thickness of shell layers is considered to be equal and

frequencies of FGM cylindrical shell was studied. (Zhang  constant. (Shah et al. 2010) have studied vibrations of
et al. 2000) analyzed the vibrations of cylindrical shells  functionally graded cylindrical shells based on elastic

employing wave propagation approach. Comparison of  foundations. They amended the equations of functionally
numerical results obtained by using the wave propagation
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graded cylindrical shells by inducting the modulii of the
Winkler and Pasternak foundations. Recently (Shah et al.
2010) presented vibration characteristics of cylindrical
shells which was filled with fluid and was put on the
elastic foundations. (Naeem et al. 2010) studied the
vibration frequency characteristics of functionally graded
cylindrical shells using the generalized differential
quadrature method. The method was founded on the
approximation of the derivatives of the unknown
functions involved in differential equations at the mesh
points of the solution domain. It was a sophisticated
technique that gives accurate and robust results. A
number of comparisons were done to check the
effectiveness, robustness and accuracy of the presented
method.

Formulation of the Shell Problem: A thin- walled
cylindrical shell with the geometrical dimensions: length
L, thickness h and mean radius R is shown in Fig. 1. An

(x.9.2) is considered to
be at the mid surface of the shell whereas X, “ and z
stand for the axial, circumferential and radial coordinates
respectively. Young’s modulus E, the Poisson ratio v and
the mass density p denote material parameters of the
shell. The axial, circumferential and radial displacement

(3'-'1 &, I':I’ VI:IJ &, I':l

orthogonal coordinate system

deformations are represented by u
and Wl @ 1)
middle surface.

The equations of shell motion from the Love
shell theory are in a differential operator form as:

respectively with regard to the shell

a
Lygu+ Lypv + Lygw = p, 53

= (1)
Loyti+ Lostv + Logw = p, —
21t 2z 23 Fr 7z @
Lo, U+ L,V + Lysw = 62—W+KW—GV2W
1 2 3 A axz 3)

Ly(i,j=123)

where state the differential operators

with regard to x and “ and are given as
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where G stands for Pasternak elastic foundation
and K for the Winkler foundation modulus. The

expression for the differential operator is:
viz 8* 1 8"

a2 T ORe

e 5

The following modal displacement shape functions are
adopted to separate the time and space variables

u[:a.', @, ) = A cos(ng ettt Km¥l

VI::L', @, t) = B sin(ng)e <t km¥d
W[:a.'J @.t) = C cos(ng)e = Fm¥d (6)

in the longitudinal, circumferential and transverse
directions respectively. The constants A, B and C are the

amplitudes of vibrations in the x, ¥ and z directions
respectively, n is the number of circumferential waves

and "= stands for axial wave number that is associated
with a boundary condition is axial wave number given for
four types of boundary conditions in Table 1:

Table 1

Boundary conditions Wave numbers

Simply supported - simply supported k. = /L
=@2m+1)7/,,

Clamped — clamped k,,
7 — am L Ty
K = E‘l'm l) /4L

Clamped - simply supported

7 — I my
Clamped — free k,=0(2m—-1) /21

. k_
These axial wave numbers ™ are selected to
satisfy boundary conditions at both edges of a cylindrical

shell. “ denotes the natural angular frequency for the
cylindrical shell.

Making substitution for the displacement functions u, v
and w from the expressions (6) in system of equations (1-
3), the shell algebraic equations are written as:

€94+ 1.8 + 050 = wip A )

Caq A + €228+ .30 = w p, B 8)

tg A+ 6.8+ o C+HEw Gk, +eyan) = w'pC ©)
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After the arrangement of terms, the algebraic
simultaneous equations (7)-(9) are written in matrix
notation as:
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[f;}j P Zi] [;] . [; o g] [;] approach. The numerical results for following four
—ciz €23 cazl Lo “lo o 1llel10) boundary conditions are calculated and compared with
C, (i,j=123) L . i those found in the open literature.
where I 7 are coefficients of stiffness matrix i. simply supported - simply supported (SS-SS)
and their values are given below: ii. clamped - clamped (C-C)
C,,=k2A, +n? % iii. c:ampeg - :imply supported (C-SS)
iv. clamped - free (C-F
c ik PutAs 2By +By P (C-F)
2 m R? Simply Supported Cylindrical Shells: In Table 2, the
C. —ik {A12 2 2Bg —B,, L K2B } non-dimensional frequency parameter
13— ""'m Y 5 2 m 211 _ 2
R R Q=aRJA-v)P/E o1 an isotropic cylindrical shell is
C.. ——ink qu +Aee n Bee +B12 compared with those ones obtained by Naeem and
2 m R R2 Sharma. (1999).The simply supported boundary
, A . 2B . ,Dq (A, 2B, D, conditions are described on shell ends. In this
Ca=kp {A%“‘ Rz ¥3 R~ +2W}+” {?* R? *74} comparison, the shell parameters, length-to-radius ratio
C, =nk2 {72866; By 2D +Dyy R“: D*2}+n{22§ +i }+ n3{%+%} and thickness-to-radius ratio are taken as: 2/ 8 = © ang
(A 2B. —B h/R = 0002 espectively. The axial mode is assumed to
Cy=—ik, 1 =2 —n*—8_ 2+ kB, m=1 . .
R R be and the circumferential wave numbers n are
Co k2 {2Bee+512 2D, +Dn}+n{Aﬂ+B }m {BZZ+D22} chosen from 1-10. Material properties of the shell are
B m R R? R?2 R? R® RY
A, 2D, +D ? mass density (’D), Poisson’s ratio () and Young’s
Co=-37 +2n 2 +2kq “+” 22+2”k2 R kD +K + G{k R} modulus (E) and their values are given as: » =~ 7859 kg/m®
(11) V=03 g E=21x 10ty
.*31;- ; D.(i,j=12and8)
\évrlg;es'onf;l co p;l'nznind Ubend'ng stiffness ressgig'? :.\(I)r Table 2 Comparison of frequency  parameter
xtensional, coupli i i ively N e e
and defined as: Q=eRVA-VIPIE for 5 sS-SS cylindrical
_ J,';"' 0. d= shell (" =1 L/R=6, h/R=10.002, v= 03y
B. = j?- 0., = dz n (Naeem and Present %
Sht Sharma 1999) Difference
z i} 1 0.140641 0.140642 0.000
= [%Q,; 27 dz 2 0.054323 0.054324  0.002
: (12) 3 0.027074 0.027075  0.004
Pt denotes the mass density per unit length and is defined 4 0.017776 0.017767 -0.051
s P g 5 0.017088 0.017074  -0.082
"o 6 0.021303 0.021304 0.005
= [Zpdz 7 0.028089 0.028082 -0.025
: (13) 8 0.036469 0.036470  0.003
For forming the shell frequency equation, the 9 0.046174 0.046171 -0.006

determinant of the matrix coefficients is vanished for
non-trivial eigen-value of the shell frequency. Either the
eigen-value problem obtained above is solved using
computer program or the determinant is expanded and the
frequencies equation is achieved in the form of

polynomial equation involving w
RESULTS AND DISCUSSION

Numerous comparisons of numerical results for
isotropic as well as functionally graded material
cylindrical shells are carried out in order to examine
validity, efficiency and accuracy of wave propagation
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Clamped Cylindrical Shells: Table 3 shows comparison

of non-dimensional frequency parameter for a
cylindrical shell executing vibration with clamped-
clamped boundary conditions. The present values are
compared with those in the reference: Zhang et al. (2001)

for L/R=20 o 4 h/R=0.002 o Mm=1 and zand

the circumferential wave numbers n are assumed to be 1-
5.

Clamped-Simply Supported Cylindrical Shells: Table
4 displays a comparison of frequency parameters
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_ I1_+,2
Q=aRy(1-v")p/E determined by the present

method with ones determined by Naeem et al.(2009) for a
clamped-simply supported cylindrical shell. A good
agreement is obvious between the two sets of results.

Table 3 Comparison of values of the frequency
_ 2
parameter 2= RVA=VIPIE 50 clamped-

Table: 5 Comparison of frequency parameter
Q=aRJA-v*)plE o clamped-free (C-F)
cylindrical shell ("= L=25¢ qmm R=1°
mm, R =3225 mm, E =207 % 10‘5N/m2’
=028 p= 7.86 x 10° Kg/m3)

n (Naeem et al. Present %

2009) Difference

1 0.0348 0.0256 -26.44

2 0.0381 0.0373 -2.080

3 0.1022 0.1024 0.196

4 0.1954 0.1958 0.205

clamped (C-C) cylindrical shells
(E=202=0.002v =03)
R R
m n (Zhang et al. Present %
2001b) Difference
1 1 0.03487 0.03488 0.02868
2 0.01176 0.01176 0.00000
3 0.007083 0.007084 0.014118
4 0.009016 0.009017 0.011091
5 0.01377 0.01377 0.00000
2 1 0.08742 0.08742 0.00000
2 0.03155 0.03155 0.00000
3 0.01586 0.01586 0.00000
4 0.01224 0.01224 0.00000
5 0.01482 0.01482 0.00000
Table 4 Comparison of frequency parameter
Q=RJL=v*)P/E ¢4 4 clamped - simply
supported cylindrical shells
{m=1,L/R= 20,h/R = 0.002,v = 0.3)
n  (Naeemetal. 2009)  Present %Difference
1 0.024029 0.024721  2.88
2 0.008283 0.008282  -0.01
3 0.005844 0.005852 0.14
4 0.008705 0.008710  0.05
5 0.013678 0.013684  0.04
6  0.019973 0.019979  0.03
7 0.027459 0.027466  0.02
8 0.036111 0.036118  0.02
9  0.045984 0.045929  -0.12
10 0.056889 0.056897 0.01

Clamped-Free Cylindrical Shells: Table 5 illustrates

frequency parameters ** for a clamped-free shell. The
analytical results were evaluated by Naeem et al. (2009)

for axial wave number ™ = L. There is once again an
excellent agreement between the two sets of analytical
results.

From the previous comparisons of numerical
results for the shell problems, it is noticed that the
method employed here is very efficient, valid, fast and
provides accurate results.
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Three-Layered Cylindrical Shells: A number of results
for the proposed three-layered functionally graded
cylindrical shells are determined for various sets of
material. The inner and outer layers of the shell are
comprised of functionally graded material whereas the
middle layer is assumed to be isotropic as shown in Fig.1
Material properties of shell are represented by Young’s

modulus (E), Poisson’s ratio () and mass density (’0). In
general, vibration characteristics are mostly influenced by
Young’s modulus. In this study, the Poisson’s ratio is
presumed to be constant for functionally graded materials
whereas the Young’s modulus depends on intrinsic
thickness variable (z) as well as the Young’s modulus of
constituent materials forming functionally graded layers.
Here two configurations of a cylindrical shell are
considered to suggest with regard to the shell layer
thickness. In first configuration, the thickness of each
layer is supposed to be of h/3 while in the second
configuration, the thickness of each of the inner and outer
layers are of h/4 and that of middle layer is of h/2.

The stiffness moduli ¢/ , 7 and Dy are
modified according to the thickness of material layers
when inner and outer layers are functionally graded and
middle is isotropic as

A, = _,;1“"_'5 1 _4;?:':559:':"9_-_1:'5_'- N A?fur{pg_-.
B, S;T:FG e S:‘.‘?':Z'ED:'."D;'I.':G_" e S?I.R:I:FG'-'
-D-'r (F i is ropic) e DD;:—:FG
N ’ ' (14)

L, j

=126

and out(FG) are associated with inner functionally
graded, middle isotropic and outer functionally graded

where and in(FG), m(isotropic)

layers of cylindrical shell respectively. Here by
considering the constituent material of stainless steel for
isotropic layer and also the FG layers are structured from
two kinds of materials, nickel and zirconia. In this way,
four types of shells are obtained and are listed in the
following Table 6
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Table 6. Description of cylindrical shells with
isotropic middle layer
Types of Inner FGM Isotropic  Outer FGM
Shell Layer Layer
Type | Nickel - Stainless Nickel -
Zirconia Steel Zirconia
Type Il Zirconia - Stainless Zirconia -
Nickel Steel Nickel
Type 1l Nickel - Stainless Zirconia -
Zirconia Steel Nickel
Type IV Zirconia - Stainless Nickel -
Nickel Steel Zirconia

Table 9. Variation of natural frequencies (Hz) of a
simply supported- simply supported three-
layered (with isotropic middle layer)
cylindrical shell on elastic foundations (™ ~ 1,
p=1 L=041, R=03015, h =0.001

m, , m,
v=036=15x lOTN-m, K =2.5x% 10 N-m)

n Type l Type ll Type Il Type IV

1 7696.81 7671.14 7696.67 7671.28

3 10990.1 10951.1 10989.9 10951.4

4 13269.6 13223.3 13269.3 13223.7

5 15720.2 15665.7 15719.8 15666.2

Material properties of isotropic materials: Steel
and Aluminium are given in Table 7 whereas the material
properties of the constituent materials forming
functionally graded layers are listed in Table 8

Table 7. Material properties of isotropic materials

Table 10 Variation of natural frequencies (Hz) of a
clamped-free three-layered (with isotropic
middle layer) cylindrical shell on elastic
foundations (= 1p =1, L= 041y R=03015
h = 0001 6 =1.5x 10’

Isotropic E(N/m?)  Poisson  pengity @
ratio(™) (Kg/m?®)

Stainless Steel 68.95E+09 0.315 2.7145E+03

Aluminium 2.1E+11 0.28 7.8E+03

Table 8. Material properties of Nickel and Zirconia

m, V=93 N-m,
K =25x10 N-m)
n Type l Type Il Type Il Type IV
1 10676.7 10645.4 10676.5 10645.6
2 11603.3 11562.0 11603.0 11562.3
3 13161.4 13114.5 13161.1 13114.8
4 15110.3 15057.2 15110.0 15057.6
5 17301.4 17241.7 17301.0 17241.6

FGM E(N/m?) Poisson P
" Density
ratio( ") (Kg/m®)
Nickel 2.05098E+11 0.3100 8900
Zirconia 1.6806296E+11 0.297996 5700

FGM Layer

Isotropic
Material
Layer

FGM Layer

Fig.1 Geometry of three layered cylindrical shell

Frequency Analysis of cylindrical Shells: Tables 9-12,
represent variations of natural frequencies (Hz) for Type
I, I1, 11 and 1V cylindrical shells. Here the middle layer is
supposed to be of isotropic and an outer and inner layer
of the shell consists of functionally graded materials.
Type | & 111 cylindrical shells have the approximate same
frequency values whereas Type Il & IV cylindrical shells
have equal vibration frequencies. This shows that the
interchange of the functionally graded materials forming
the outer layers of the shell do not affect the frequency.

Table 11. Variation of natural frequencies (Hz) of a
clamped- simply supported three-layered
(with isotropic middle layer) cylindrical shell

on elastic foundations (™~ 1P =1

L= O"“‘m, R=03015y £ =000l v=03

G =15x 107 N-m, K =25 107 N-m)
n Type | Type 11 Type I Type IV
1 9159.33 9130.67 9159.13 9130.88
2 10262.3 10225.2 10262.1 10225.4
3 12013.2 11970.3 12012.9 11970.6
4 14126.1 14076.6 14125.8 14077.0
5 16449.7 16392.6 16449.3 16393.0

Table 12 Variation of natural frequencies (Hz) of a
clamped-free three-layered (with isotropic
middle layer) cylindrical shell on elastic
foundations (™= 1P =1 L=04pm R=030154

h= 0.001m, v=03 6=15X IOTN-m, K=25x% lo'N_m)
n Type l Type Il Type I Type IV
1 5159.96 5141.50 5159.89 5141.57
2 7082.46 7057.42 7082.30 7057.58
3 9471.44 9438.61 9471.19 9438.86
4 12040.0 11998.5 12039.7 11998.9
5 14694.3 14643.8 14693.9 14644.2
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Fig.2 represents variation of natural frequency
(Hz) for the three layered cylindrical shell with boundary
conditions SS - SS, C - C, C - SS and C - F versus the

axial mode ™= ¥23%5  The frequency increases
linearly with the axial mode (m) for each boundary
condition. The frequency is the highest for clamped-
clamped condition followed by clamped — simply
supported, simply supported — simply supported, and
clamped - free. This behaviour is due to the constraints
involved in a condition.
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Fig. 2 Variations of natural frequencies (Hz) for the

three layered cylindrical shell when
n=0%>=202=0002p=1
R R
Concluding Remarks: In this study, vibration

characteristics of three-layered cylindrical shells are
investigated. In the configuration, outer and inner layers
are of functionally graded layers whereas the middle
layer is isotropic. This forms a combination of isotropic
and functionally graded layers. In a shell thickness
direction, material composition of a functionally graded
material is controlled by volume fraction law. Love shell
dynamical equations are considered to describe the
vibration problem. Pasternak and Winkler foundations
are attached in the transverse direction. Wave
propagation approach is applied to frame the shell
frequency equation for a cylindrical shell in the eigen
value form. MATLAB programs are written to extract
vibration frequencies. It is observed that frequency
increases with increasing values of circumferential wave
number n. It is seen that natural frequencies of Type |
cylindrical shell are identical to that of Type Il
cylindrical shell whereas natural frequencies of Type Il
and Type IV coincide with each other. It is concluded
that frequency is the highest for clamped-clamped
condition followed by clamped — simply supported,
simply supported — simply supported, and clamped - free.
This behaviour is due to the constraints involved in a
condition.
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