IMPROVEMENTS OF THE GENERALIZED REVERSE AM-GM OPERATOR INEQUALITY FOR UNITAL POSITIVE LINEAR MAPS

S. Karim ${ }^{1}$, I. Ali ${ }^{2}$ and M. Mushtaq
Department of Basic Sciences and Humanities U.E.T Lahore FSD Campus

Abstract

In this article, we shall give generalized forms of the operator reverse Arithmetic mean -Geometric mean inequality for unital positive linear maps on Hilbert Space operators. Our obtained results are sharper as compare to some recent published results. We shall present more appropriate inequalities.

Index Terms: Positive operators, operator AM-GM inequality, operator reverse AM-GM inequality, operator norm unital positive linear maps.
(Received 00.10.2022 Accepted 17.11.2022)

INRODUCTION

We reserve m_{1}, m_{2}, M_{1} and M_{2} for scalars, other capital letters are used to present the general elements of C^{*} on Hilbert space $(\mathcal{H},<.,>)$ whose identity is denoted by I. Operator norm is presented by $\|$.$\| . An operator A_{1} \in L(\mathcal{H})$ is known as positive operator if $\left\langle A_{1} x\right\rangle \geq 0 \forall x \in \mathcal{H}$ and it is known to be strictly positive if $\left\langle A_{1} x\right\rangle>0 \forall x \in \mathcal{H} \backslash\{0\}$, symbolically we can write these operators by $A_{1} \geq 0$ and $A_{1}>$ 0 respectively .If $B_{1}-A_{1} \geq 0$,It describes that $B_{1} \geq$ A_{1}. A linear map ϕ is named as positive if $\phi\left(A_{1}\right) \geq 0$ whenever $A_{1} \geq 0$,we named it unital if for identity operator $\phi(I)=I$, if $A_{1}, B_{1} \in L(\mathcal{H})$ be positive invertible operator t-weighted arithmetic and geometric mean can be defined as respectively as
$A \nabla_{t} B=t A+(1-t) B$
$A \#_{t} B=A_{1}^{\frac{1}{2}}\left(A_{1}^{\frac{-1}{2}} B_{1} A_{1}^{\frac{-1}{2}}\right)^{t} A^{\frac{1}{2}}$
Where $=t \in[0,1]$. When $t=\frac{1}{2}$, we simply write
$A \nabla_{t} B=t A+(1-t) B$,
$A \#_{t} B=A_{1}^{\frac{1}{2}}\left(A_{1}^{\frac{-1}{2}} B_{1} A_{1}^{\frac{-1}{2}}\right)^{t} A^{\frac{1}{2}}$.
For $A_{1}, B_{1} \in L(\mathcal{H})$,the well-known AM-GM operator inequality is defined as
$\left(A_{1} \# B_{1}\right) \leq\left(\frac{A_{1}+B_{1}}{2}\right)(01)$ For $0<m_{1} \leq A_{1}, B_{1} \leq M$ Lin [6] derived the following reverse form of the inequality (01)
$\phi\left(A_{1} \# B_{1}\right) \leq \mathrm{K}(\mathrm{h}) \phi\left(\frac{A_{1}+B_{1}}{2}\right),(02)$
Where ϕ is positive unital linear map and where $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{M}{m}$ is known as Kantorovich constant and simple denoted by K(h).

Let $A_{1}, B_{1} \geq 0$.Ando[1] proved the following inequality
$\Phi\left(A_{1} \# B_{1}\right) \leq \Phi\left(A_{1}\right) \# \Phi\left(B_{1}\right)$. (03)
By inequalities (01) and (03) we have $\phi\left(A_{1} \# B_{1}\right) \leq \mathrm{K}(\mathrm{h}) \leq \Phi\left(\left(A_{1}\right) \# \Phi\left(B_{1}\right)\right)$. (04)

It is well known that positive operators $A_{1}, B_{1} \in$ $L(\mathcal{H})$, Lowner Heinz inequality states that for $(0 \leq p \leq$ 1).

If $A_{1} \leq B_{1}$ then, we have $A_{1}{ }^{p} \leq B_{1}{ }^{p}(05)$
In general, for $p>1$ the inequality (05) is not true It is interesting to know that what kinds of inequalities preserve the relation when $p>1$.

Lin in [6] proved that we can square the inequalities (02) and (04) as following
$\phi^{2}\left(\frac{A_{1}+B_{1}}{2}\right) \leq K^{2}(h) \Phi^{2}\left(A_{1} \# B_{1}\right), \quad(06) \quad \Phi^{2}\left(\frac{A_{1}+B_{1}}{2}\right) \leq$ $K^{2}(h)\left(A_{1}\right) \# \Phi\left(B_{1}\right)^{2} .(07)$
Zhang [9] generalized the inequalities (6) and (7) as follows
$\Phi^{p}\left(\frac{A_{1}+B_{1}}{2}\right) \leq \frac{\left(K(h)\left(M_{1}^{2}+m_{1}^{2}\right)\right)^{p}}{16 M_{1}^{p} m_{1}^{p}} \Phi^{p}\left(A_{1} \# B_{1}\right)$,
$\phi\left(\frac{A_{1}+B_{1}}{2}\right) \leq \frac{\left(K(h)\left(M_{1}^{2}+m_{1}^{2}\right)\right)^{p}}{16 M_{1}^{p} m_{1}^{p}} \phi\left(\left(A_{1} \# \phi\left(B_{1}\right)\right)^{p}\right.$
where $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ and $h=\frac{M}{m}$
For $0<m_{1} \leq A_{1} \leq m_{2} \leq M_{2} \leq B_{1} \leq M_{1}$ and $p \geq 1$,
Moradi et al [5] improved the inequalities (06) and (07) as follows

$$
\begin{align*}
& \Phi^{2}\left(\frac{A_{1}+B_{1}}{2}\right) \leq \frac{K^{2}(h)}{\left(1+\frac{\left(\log M_{2} \backslash m_{2}\right)^{2}}{8}\right)^{2}} \Phi^{2}\left(A_{1} \# B_{1}\right) \tag{10}\\
& \Phi^{2}\left(\frac{A_{1}+B_{1}}{2}\right) \leq \frac{K^{2}(h)}{\left(1+\frac{\left(\frac{\log M_{2}}{m_{2}}\right)^{2}}{8}\right)^{2}}(\Phi(A) \# \Phi(B))^{2} \tag{11}
\end{align*}
$$

For $\quad 0<m_{1} \leq A_{1} \leq m_{2} \leq M_{2} \leq B_{1} \leq M_{1}$ and $p \geq 1$, Yang and Lu [8] proved that obtained the generalized forms of the inequalities (10) and (11) as following Let $0<m \leq A_{1} \leq m^{\prime} \leq M^{\prime} \leq B_{1}$ and $p \geq 1$, we have
$\Phi^{2 p}\left(A_{1} \nabla_{t} B_{1}\right) \leq$
$\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{2 p} \Phi^{2 p}\left(A_{1} \#_{t} B_{1}\right),($
$\left(\frac{K(h, 2)}{4^{1 \backslash p-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{2 p}\left(\Phi\left(A_{1}\right) \#_{t} \Phi\left(B_{1}\right)\right)^{2 p}$
$t \in[0,1], h=\frac{M}{m}, Q(t)=\frac{t^{2}}{2}\left(\frac{1-2 t}{t}\right)^{2 t}, Q(0)=Q(1)=1$
Let $0<m_{1} \leq A_{1} \leq m_{2} \leq M_{2} \leq B_{1} \leq M_{1}$ and $p \geq 2$,
we have
$\Phi^{2 p}\left(A_{1} \nabla_{u} B_{1}\right) \leq$
$\left(\frac{K(h, 2)\left(M_{1}^{2}+m_{1}^{2}\right)}{16 M_{1}^{2 p} m_{1}^{2 p}\left(1+Q(u)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)^{2 p} \Phi^{2 p}\left(A_{1} \#_{u} B_{1}\right),(14)$
$\Phi^{2 p}\left(A_{1} \nabla_{u} B_{1}\right) \leq$
$\left(\frac{K(h, 2)\left(M_{1}^{2}+m_{1}^{2}\right)}{16 M_{1}^{2 p} m_{1}^{2 p}\left(1+Q(u)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)^{2 p}\left(\Phi\left(A_{1}\right) \not{ }_{u} \Phi\left(B_{1}\right)\right)^{2 p}$.
(15)
$t \in[0,1], h=\frac{M}{m}, Q(t)=\frac{t^{2}}{2}\left(\frac{1-2 t}{t}\right)^{2 t}, Q(0)=Q(1)=1$ In this article in section 2 , we shall improve the inequalities (12)-(15)

MAIN RESULTS

We will need the following important lemmas

 to prove our main resultsLemma 1 Let $A_{1}, B_{1}>0$. Then the following norm inequality holds:

$$
A_{1} B_{1} \leq \frac{1}{4} A_{1}+B_{1} ?^{2} \text {. }
$$

Lemma 2 Let $A_{1}>0$. Then the following result holds for every positive unital linear map Φ

$$
\Phi^{-1}\left(A_{1}\right) \leq \Phi\left(A_{1}\right)^{-1}
$$

Lemma 3 Let $A_{1}, B_{1} \geq 0$ and $1 \leq r \leq+\infty$, then the following inequality holds:

$$
\left\|A_{1}^{r}+B_{1}^{r}\right\| \leq\left\|\left(A_{1}+B_{1}\right)^{r}\right\|
$$

Lemma $41+Q(t) \log \left(\frac{M_{2}}{m_{2}}\right)\left(A_{1} \#_{t} B_{1}\right) \leq A_{1}^{-1} \nabla_{t} B_{1}^{-1}$
$\Phi^{2 p}\left(A_{1} \nabla_{t} B_{1}\right) \leq$ Where $Q(t)=\frac{t^{2}}{2}\left(\frac{1-2 t}{t}\right)^{2 t}, Q(0)=Q(1)=0$.
Now we Shall prove the first main theorem of this article.

Theorem 1 Let $0<m_{1} \leq A_{1} \leq m_{2} \leq M_{2} \leq B_{1} \leq M_{1}$ and $p \geq 1$, then for all positive unital linear map Φ, we have

$$
\begin{align*}
& \Phi^{2 p}\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-(1+\right.\right. \\
& \left.\left.\left.Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)\left(A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right)\right) \\
& \leq\left(\frac{K(h)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)^{2 p} \Phi^{2 p}\left(A_{1} \#_{t} B_{1}\right),(16) \tag{16}\\
& \text { And } \\
& \Phi^{2 p}\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-(1+\right.\right. \\
& \left.\left.\left.Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)\left(A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right)\right) \\
& \leq\left(\frac{K(h)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)^{2 p}\left(\Phi\left(A_{1}\right) \#_{t} \Phi\left(B_{1}\right)^{2 p}\right. \tag{17}
\end{align*}
$$

Proof: We shall apply lemma (1-4) to obtain our results By $0<m_{1} \leq A_{1} \leq m_{2} \leq M_{2} \leq B_{1} \leq M_{1}$, we have $(1-t)\left(M_{1} I-A_{1}\right)\left(m_{1} I-A_{1}\right) A_{1}^{-1} \leq 0$,
This is equivalent to
$(1-t) A_{1}+(1-t) M_{1} m_{1} A_{1}^{-1} \leq(1-t)\left(M_{1}+m_{1}\right) I$.
(18)

Similarly, we have
$t B_{1}+t M_{1} m_{1} B_{1}^{-1} \leq t\left(M_{1}+m_{1}\right) I(19)$
By Adding (18) and (19) we obtain
$A_{1} \nabla_{t} B_{1}+M_{1} m_{1} A_{1} \nabla_{t} B_{1} \leq\left(M_{1}+m_{1}\right) I(20)$

Compute

$$
\begin{aligned}
& \leq \frac{1}{4}\left\|\begin{array}{c}
\Phi\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right) A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right. \\
+M_{1} m_{1}\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)\right)^{p} \Phi^{-1}\left(A_{1} \# B_{1}\right)
\end{array}\right\|^{2 p} \\
& \leq \frac{1}{4}\left\|\begin{array}{c}
\Phi\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right) A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right) \\
\left.+M_{1} m_{1}\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)\right)^{2}\right)^{2 p} \Phi\left(\left(A_{1} \#_{t} B_{1}\right)^{-1}\right)
\end{array}\right\|^{2} \\
& =\frac{1}{4}\left\|\begin{array}{c}
\|\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right) A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right.
\end{array}\right\|^{2 p} \|_{1}^{2} m_{1}\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)\right)^{2} \Phi\left(\left(A_{1} \#_{t} B_{1}\right)^{-1}\right), ~ \\
& =\frac{1}{4}\left\|\Phi\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}\right)\right)\right\|^{2 p} \\
& \leq \frac{1}{4}\left(M_{1}+m_{1}\right)^{2 p}(\text { by }(20))
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
& \| \Phi^{p\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right) A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right)} \\
& \leq\left(\frac{\Phi^{-p}\left(A_{1} \# B_{1}\right)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)
\end{aligned}
$$

The Inequality (16) is proved.
Next, we shall prove inequality (17) by applying the lemmas (1-4)
Compute $\left.\| \begin{array}{c}\Phi^{p}\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right) A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right.\end{array}\right)\left\|\left.\|_{1}^{p} m_{1}^{p}\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)\right)^{p}\left(\Phi\left(A_{1} \#_{t} B_{1}\right)\right)^{-p} \right\rvert\,\right.$

$$
\begin{aligned}
& \leq \frac{1}{4}\|\underbrace{A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right) A_{1}^{-1} \#_{t} B_{1}^{-1}\right)}\|^{+M_{1} m_{1}\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)\right.})^{2} \Phi^{-1}\left(A_{1} \#_{t} B_{1}\right) \quad \|^{2 p}\left(M_{1}+m_{1}\right)^{2 p}
\end{aligned}
$$

So, we obtain

$$
\left\|\Phi^{p\left(A_{1} \nabla_{t} B_{1}+M_{1} m_{1}\left(A_{1}^{-1} \nabla_{t} B_{1}^{-1}-\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right) A_{1}^{-1} \#_{t} B_{1}^{-1}\right)\right)} \begin{array}{c}
\left(\Phi\left(A_{1}\right) \#_{t} \Phi\left(B_{1}\right)\right)^{-p}
\end{array}\right\|
$$

$\leq\left(\frac{K(h)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)^{2 p}$.
Remark: By the lemma (4) it is clear that our theorem gives refinements of inequalities (12) and (13).
Theorem: 2
LET $0<m_{1} \leq A_{1} \leq m_{2} \leq M_{2} \leq B_{1} \leq M_{1}$ AND $p \geq 2$, THEN FOR ALL POSITIVE UNITAL LINEAR MAP Φ, WE HAVE
$\left[\Phi^{2}\left(A_{1} \nabla_{t} B_{1}\right)+M_{1}^{2} m_{1}^{2} \frac{\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{2}\right)}{K^{2}(h)}\left(\left(\frac{K(h)}{\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)^{2} \Phi^{-2}\left(A_{1} \nabla_{t} B_{1}\right)-\Phi^{-2}\left(A_{1} \#_{t} B_{1}\right)\right)\right]^{p} \leq$
$\frac{\left(K(h)\left(M_{1}^{2}+m_{1}^{2}\right)\right)^{2 p}}{16 M_{1}^{2 p} m_{1}^{2 p}\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{2 p}} \Phi^{2 p}\left(A_{1} \#_{t} B_{1}\right)$,
And

$$
\begin{aligned}
& {\left[\Phi^{2}\left(A_{1} \nabla_{t} B_{1}\right)+M_{1}^{2} m_{1}^{2} \frac{\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{2}\right)}{K^{2}(h)}\left(\left(\frac{K(h)}{\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)}\right)^{2} \Phi^{-2}\left(A_{1} \nabla_{t} B_{1}\right)-\Phi^{-2}\left(A_{1} \#_{t} B_{1}\right)\right]\right.} \\
& \leq \frac{\left(K(h)\left(M_{1}^{2}+m_{1}^{2}\right)\right)^{2 p}}{16 M_{1}^{2 p} m_{1}^{2 p}\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{2 p}}\left(\Phi\left(A_{1}\right) \#_{t} \Phi\left(B_{1}\right)\right)^{2 p}(22) \text { where } K(h)=\frac{(h+1)^{2}}{4 h}, h=\frac{M_{1}}{m_{1}}, t \in[0,1], Q(t)=\frac{t^{2}}{2}\left(\frac{1-2 t}{t}\right)^{2 t}
\end{aligned}
$$

Proof For $0<m_{1} \leq A_{1} \leq m_{2} \leq M_{2} \leq B_{1} \leq M_{1}$, it is easy to verify that $m_{1} I \leq \Phi\left(A \nabla_{t} B\right) \leq M I$.
So, we can obtain $m_{1}^{2} I \leq \Phi^{2}\left(A \nabla_{t} B\right) \leq M_{1}^{2} I$.
Therefore

$$
\left(M_{1}^{2}-\Phi^{2}\left(A \nabla_{t} B\right)\left(m_{1}^{2}-\Phi^{2}\left(A \nabla_{t} B\right)\right) \Phi^{-2}\left(A \nabla_{t} B\right)\right) \leq 0
$$

This is equivalent to
$M_{1}^{2} m_{1}^{2} \Phi^{-2}\left(A \nabla_{t} B\right)+\Phi^{2}\left(A \nabla_{t} B\right) \leq\left(M_{1}^{2}+m_{1}^{2}\right) I$. (23)
Now we compute the results by applying Lemma (1) and Lemma (3)
$\|\left[\begin{array}{c}{\left[\Phi^{2}\left(A_{1} \nabla_{t} B_{1}\right)+M_{1}^{2} m_{1}^{2} \frac{\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{2}\right)}{K^{2}(h)}\binom{\frac{K^{2}(h)}{\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{2}} \Phi^{-2}\left(A_{1} \nabla_{t} B_{1}\right)}{-\Phi^{-2}\left(A_{1} \#_{t} B_{1}\right)}\right.} \\ M_{1}^{p} m_{1}^{p} \frac{\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{p}}{K^{p}(h)} \Phi^{-p}\left(A_{1} \#_{t} B_{1}\right)\end{array}\left\|^{\frac{p}{2}}\right\|\right.$
$=\frac{1}{4}\left\|\Phi^{2}\left(A_{1} \nabla_{t} B_{1}\right)+M_{1}^{2} m_{1}^{2} \Phi^{-2}\left(A_{1} \nabla_{t} B_{1}\right)\right\|^{p}$
$\leq \frac{1}{4}\left(M_{1}^{2}+m_{1}^{2}\right)^{p}($ by $(23))$
This implies that

$$
\begin{aligned}
\|\left[\Phi^{2}\left(A_{1} \nabla_{t} B_{1}\right)+M_{1}^{2} m_{1}^{2} \frac{\left(\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{2}\right)}{K^{2}(h)}\right. & \left.\left(\frac{K^{2}(h)}{\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)} \Phi^{-2}\left(A_{1} \nabla_{t} B_{1}\right)-\Phi^{-2}\left(A_{1} \#_{t} B_{1}\right)\right)\right]^{\frac{p}{2}} \Phi^{-p}\left(A_{1} \# B_{1}\right) \| \\
& \leq \frac{\left(K(h)\left(M_{1}^{2}+m_{1}^{2}\right)\right)^{p}}{4 M_{1}^{p} m_{1}^{p}\left(1+Q(t)\left(\log \frac{M_{2}}{m_{2}}\right)^{2}\right)^{p}}
\end{aligned}
$$

Thus inequality (21) is proved
Proof of inequality (21) is same as of (22) we omit the details. The proof is completed.

Remark By the inequalities it is clear that our inequalities improved inequalities (16) and (17), it is clear that inequalities (21) and (22) gives the refinement of (14) and (15).

Conclusion and Recommendation: Operator inequalities that come into existence from operator convex or from operator-monotone functions, or from algebraic considerations, are generally effective in wide
range of settings, ranging from finite operators and matrices and elements in C^{*} algebra. Some matrix inequalities, however, exist for positive definite matrices. AM-GM inequality is an example of such inequality which holds for positive definite matrices and for positive invertible operators and needs future work. Singular values and unitarily invariant norms inequalities play a significant role in operators and matrices inequalities. These inequalities help us in the field of positive linear maps inequalities. Various positive linear maps operator inequalities can be proved, squared, improved and generalized.

REFERENCES

Ando, T.(1979) Concavity of certain maps on positive definite matrices and application to Hadamard products. Linear Algebra Appl. 26: 203-241.
Bhatia, R., Kittaneh, F. (1999) Notes on matrix arithmetic-geometric mean inequalities. Linear

Algebra. Appl, 308: 203-211
R, Bhatia. (2007) Positive Definite matrices Princeton university press. Drury, S,W.(2012). On a question of Bhatia and Kittaneh. Linear. Algebra. Appl,437: 1955-1960.
Moradi, H, R., Mohsen E, M., Gumus, I, L., Naseri, R.(2018). A note on some inequalities for positive linear maps. Linear and Multilinear Algebra.66:7.1449-14460.
Lin, M. (2013). Squaring a reverse AM-GM inequality. Stud. Math, 215 (2): 187-194.
Tominaga, M. (2002). Specht's ratio in the Young's inequality. Sci. Math. Japon, 583-587.
Yang, C., Lu, F. (2018). Improving some operator Inequalities for Positive Linear aps. Filomat 32:12: 4333-4340.
Zhang, P,. (2015). More operator inequalities for positive linear maps. Banach J. Math. Anal. 9: 166-172.

