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INRODUCTION 

 We reserve           and    for scalars, 

other capital letters are used to present the general 

elements of    on Hilbert space (        whose 

identity is denoted by I. Operator norm is presented 

by‖ ‖. An operator     (   is known as positive 

operator if〈    〉          and it is known to be 

strictly positive if 〈    〉          {0}, symbolically 

we can write these operators by      and    
  respectively .If        ,It describes that    
  .A linear map   is named as positive if  (      

whenever     ,we named it unital if for identity 

operator  (    ,if        (   be positive invertible 

operator   -weighted arithmetic and geometric mean can 

be defined as respectively as  
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 For        (   ,the well-known AM-GM 

operator inequality is defined as 
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[6] derived the following reverse form of the inequality 
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 is known as 

 Kantorovich constant and simple denoted by 
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 Let       .Ando[1] proved the following 

inequality  
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By inequalities (01) and (03) we have  
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 It is well known that positive operators       
 (  , Lowner Heinz inequality states that for (    
  .  

 If       then, we have   
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 In general, for     the inequality (05) is not 

true It is interesting to know that what kinds of 

inequalities preserve the relation when    . 

 Lin in [6] proved that we can square the 

inequalities (02) and (04) as following 

  (
     

 
)     (    (        (06)   (

     

 
)  

  (  (     (   
    (07)  

Zhang [9] generalized the inequalities (6) and ( 7) as 

follows  
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For                            , 

Moradi et al [5] improved the inequalities (06) and (07) 

as follows  
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For                            , 

Yang and Lu [8 ] proved that obtained the generalized 

forms of the inequalities (10) and (11) as following  

 Let                        , we have 
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 In this article in section 2 ,we shall improve the 

inequalities (12)-(15) 

MAIN RESULTS 

 We will need the following important lemmas 

to prove our main results  

Lemma 1 Let        . Then the following norm 

inequality holds:  

       
 

 
         

    

Lemma 2 Let       . Then the following result holds 

for every positive unital linear map   
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Lemma 3 Let         and        then the 

following inequality holds: 
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 Now we Shall prove the first main theorem of 

this article. 

Theorem 1 Let                     

and    ,then for all positive unital linear map  ,we 

have  
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Proof: We shall apply lemma (1-4) to obtain our results  

By                     , we have 
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The Inequality (16) is proved. 

 Next, we shall prove inequality (17) by applying the lemmas (1-4) 
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Remark: By the lemma (4) it is clear that our theorem gives refinements of inequalities (12) and (13). 

Theorem: 2  

LET                     AND    , THEN FOR ALL POSITIVE UNITAL LINEAR MAP  ,WE HAVE 

[  (          
   

 
((   (  (   

  
  

)
 
*
 

)

  (  
 ((

 (   

(   (  (   
  
  

)
 
*
+

 

   (           (       ,]

 

 

( (  (  
    

 ))
  

    
  

  
  

(   (  (   
  
  

)
 
*
    

  (         (21) 

And  

[
 
 
 
 
 

  (          
   

 

((   (  (   
  
  

)
 

)

 

+

  (  
 

(

 
 
 

(

 
  (   

(   (  (   
  
  

)
 

)
)

 
 

 

   (           (       

)

 
 
 

]
 
 
 
 
 
 

 

  
( (  (  

    
 ))

  

    
  

  
  

(   (  (   
  
  

)
 
*
   ( (      (   )

  
 (22) where  (    

(     

  
   

   

  
    [   ]  (   

  

 
(
     

 
)
  

  

Proof For                    , it is easy to verify that      (          
So, we can obtain   
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Now we compute the results by applying Lemma (1) and Lemma (3) 
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Thus inequality (21) is proved  

Proof of inequality (21) is same as of (22) we omit the details . The proof is completed. 

 

Remark By the inequalities it is clear that our 

inequalities improved inequalities (16) and (17),it is clear 

that inequalities (21) and (22) gives the refinement of 

(14) and (15). 

Conclusion and Recommendation: Operator 

inequalities that come into existence from operator -

convex or from operator-monotone functions, or from 

algebraic considerations, are generally effective in wide 
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range of settings, ranging from finite operators and 

matrices and elements in    algebra. Some matrix 

inequalities, however, exist for positive definite matrices. 

AM-GM inequality is an example of such inequality 

which holds for positive definite matrices and for positive 

invertible operators and needs future work. Singular 

values and unitarily invariant norms inequalities play a 

significant role in operators and matrices inequalities. 

These inequalities help us in the field of positive linear 

maps inequalities. Various positive linear maps operator 

inequalities can be proved, squared, improved and 

generalized.  
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