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ABSTRACT: The most prevalent mineral in the earth's mantle is silicon, which ranks second only 

to oxygen, but unlike oxygen, it has not been shown to be necessary for plant development. Plants can 

only absorb silicon in one of two forms: silicic acid (Si (OH) 4) or mono silicic acid (H4SiO4), neither 

of which is found in the planet's crust as silicon dioxide (SiO2). Silicon fertilizer has been shown to 

boost agricultural output and sustainability, and its use has been met with widespread praise. When 

water is lost via the stomata of a plant, the gel that has been polymerized from the silicon solution in 

the roots is precipitated out of solution. It has been shown that polymerized gel has no significant part 

in the physical functions of the plant system. This article reviews the function that silicon in soil, 

water, and plants plays in protecting ecosystems against abiotic and biotic pressures. The interplay 

between silicon, plant species, and environments is nuanced. 
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INTRODUCTION 

 Silicon is very significant due to the fact that it 

is second only to oxygen in the abundance of the element 

in the planet's crust. Approximately 28.1 percent of the 

planet's crust is made of silicon. About 50%-70% of soil 

is composed of silicon dioxide (Ma and Yamaji, 2006). 

Chemical element group 14, atomic number 28.0855; 

crucial to Earth's biota. An important component for 

humans and other animals, contrary to lower plants 

(Liang et al., 2015). A lot of the world's regions, yield 

losses are a result of environmental pressures, both biotic 

and abiotic, that change plant growth and development. 

Plants adapt their survival strategies in response to a 

variety of stresses. Plant nutrition is crucial for 

maintaining stress tolerance and promoting healthy 

development. Tolerance for a wide range of stressors may 

be obtained from micronutrients (Vanderschuren et al., 

2013; Bradacova et al., 2016).Silicon helps plants deal 

with both biotic (diseases and insect pest attacks) and 

abiotic (high temperatures, high salt concentrations, 

dehydration, and improper nutrition) stress (Zhu and 

Gong, 2014; Wang et al., 2015; Coskun et al., 2016). 

Plant and Soil-based sources of silicon: Extremely high 

concentrations of silicon (between 23 and 47 percent) 

may be found in rocks like orthoquartize and basalt, 

moreover, this substance may be discovered in the 

planet's crust (Tubana et al., 2016). 

Soil: You may find silica in solid, liquid, and adsorbate 

forms. Silicon is found in its crystalline solid phase, 

which includes both primary and secondary silicates. The 

average range of salicylic acid concentration in various 

aquifers is 30.38 ppm (Pradeep et al., 2016). The greatest 

SiO2 concentration found in the roughly 380 rivers 

studied in Japan was 61.5 parts per million, while the 

lowest was just 4.1 parts per million (Kobayashi, 1960). 

Even in a dust storm, silicic acid may be found in the air. 

Quartz, an amorphous and crystalline form of the silica 

silicate, is a recognized carcinogen (Kanatani et al., 

2010). Field measurements of nanoparticles may be taken 

using a tool called a Nano Aerosol Mass Spectrometer 

(NAMS), which can provide accurate readings down to 

20 nm (Bzdek et al., 2014). 

Plant: Plants contribute to the silicon cycle by chelating 

the element from the environment that may then be 

recycled via human and animal waste, leaf decay, 

manure, and direct incorporation into fields. Between 

0.1% and 10% of dry mass is devoted to silicon (Currie 

and Perry, 2007). Plants absorb silica in high 
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concentrations from both irrigation water and the soil's 

solution. Silica is transported by three different proteins 

(Lsi1, Lsi2 and Lsi6). While transporting silica out from 

soil's solution to the plant root, Low Silicon1 (Lsi1) (Ma 

et al., 2006). Transporting silicon from root cells to the 

apoplast is the job of low silicon 2 (Lsi2) (Ma et al., 

2007). Silicon is transported from vascular bundles to 

panicles by low silicon 6 (Lsi6) (Babu Rao and Sushmita, 

2017). Monocots including rice, sugarcane, barley, and 

wheat are among the plants that acquire silicon, whereas 

dicots are nano-accumulators. Soybeans and sugar beets, 

for example, are dicots that can store silica (Hodson et 

al., 2005). 

Managing Crop Production under Abiotic and Biotic 

Stresses: Silicon's Role 

Silicon's Importance in Countering Abiotic Stress: 

Some physiological processes, including as ion 

absorption, metabolism, photosynthetic, osmotic stress 

behavior, seedling growth, and nutrient uptake, may be 

altered by abiotic stresses such drought, soil salinity, 

improper nutrition, and heavy metals. 

Drought: Evaporation causes water loss, stomatal 

closure, or a decrease in photosynthetic activity. Stomata 

are primarily responsible for transpiration. Evaporation 

rates may be improved by implanting silicon beneath the 

epidermis to produce a Si-cuticle dual layer. Plants 

treated with Si exhibit increased tolerance to water stress 

through many pathways. The cellular membrane 

aquaporin is regulated and protected against reactive 

oxygen pollutants by silicon treatment in plants. Silicon 

increases root hydraulic conductivity. Better water uptake 

and transport are both made possible by increased root 

hydraulic conductivity, which in turn keeps 

photosynthesis going strong and helps plants weather 

drought (Luyckx et al., 2017). 

Salinity: When there is a lot of salt in the soil, plants 

experience stress from osmotic, oxidative, and ionic 

forces. Groundwater, soil, and crop yields are all 

negatively impacted by salinity. The presence of silicon 

inhibits the uptake of sodium and chlorine. Silicon, 

precipitating as SiO2, blocks bypassed movement during 

respiration, mitigates the toxicity of NaCl in rice (Yeo et 

al., 1999). Oxidative damage and ion toxicity are reduced 

by silicon treatments with hydrogen peroxide (Abdelaal 

et al., 2020). Several aspects, such as the type of culture 

(soil vs. hydroponic), route of administration (root vs. 

foliar), type of silicon (silica stoms vs. silica materials), 

content, time, or velocity, alter the impact of silicon on 

salinity stress (Zhu et al., 2019) (Zhu et al., 2019). 

Heavy metals: People and the ecosystem may be at risk 

from heavy metals and essential minerals in contaminated 

soil (Imtiaz et al., 2016). Several metals' toxicity may be 

reduced by using silica. There was a significant decrease 

in the toxicity of metals such aluminium, zinc, iron, and 

manganese as a result of silicon, and phosphorus 

availability was enhanced (Guntzer et al., 2012). 

 Silicon enhances the oxidizing capability of rice 

roots, lowering the toxicity of ferrous iron and making 

more of it available to the plant (Ma and Takahashi, 

2002). Plants like wheat, rice, cucumbers, soybeans, etc. 

are also severely impacted by high levels of aluminium 

and manganese. Soil levels of phytotoxic aluminium may 

be lowered by combining silicon and aluminium to 

generate inert alumino- silicates and inhibiting the 

apoplastic route. 

Improper Nutrition: Due to issues with plant 

functioning (such as the failure to create chlorophyll 

content and the failure to form food), nutritional 

imbalances have a wide-ranging impact on agricultural 

output. In phosphorus-deficient barley and rice, silicon 

has a positive impact. The two elements manganese (Mn) 

and iron (Fe) regulate the plant's access to phosphorus; 

silicon promotes plant access by decreasing Mn and Fe 

levels (Ma, 2004). The reciprocal shadowing and plant 

sensitivity brought on by excessive nitrogen availability 

may be mitigated by increasing silicon availability. 

Hormonal and metabolic changes caused by silicon 

treatment in magnesium-deficient maize plants result in 

increased growth, chlorophyll content, and sugar content 

(Hosseini et al., 2019). 

Silicon's Importance in countering biotic Stress: Yield 

loss and decreased crop output may be attributed to a 

wide variety of biotic stressors. Biotic stress is the main 

factor behind crop loss globally (Wang et al., 2003). 

Applying silicon to plants makes them more resilient to 

abiotic stresses. 

Procedures for preventing the spread of illness and 

eradicating insect infestations: In order to prevent the 

spread of illness, silicon uses two different techniques. As 

a physical barrier, silicon may be put on the surface of the 

tissue or just under the leaf cuticle to prevent the entry of 

insects, pests, and fungi (Samuels et al., 1991). The 

second set of defenses involves sending signals to the 

body's defensive systems so that they may make 

substances like phenolics, phytoalexins, and lignin (Ma 

and Yamaji, 2006). 

Diseases: The presence of silicon in the body increases 

protection against several illnesses. It is the fungus 

Magnaporthe grisea that causes rice blast, a disease that 

manifests itself in two stages: the vegetative (leaf blast) 

and the reproductive (neck blast) phases of rice 

development (Ma, 2004). Treatment with silicon prevents 

leaf and neck blast in a variety of plant life stages. The 

fungus Sphaerotheca fuliginea causes powdery mildew 

on strawberries, wheat, and cucumbers. Plants are better 

able to resist powdery mildew when their silicon 

concentration is higher. Bacterial blight, stem rot, rice 
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brown spot, corynespora, and cucumber fusarium wilt 

may all be prevented by raising silicon accessibility 

(Datnoff et al., 2002).Infectivity is a result of resistance 

enzymes as -1, 3-glucanase, phenylalanine ammonia 

lyase (PAL), chitinase, and superoxide dismutase 

(Waewthongrak et al., 2015). 

Insect pest: Insect pest resistance increases with silicon 

levels in the growing medium and soil. Silicon helps 

harden cuticle, making it more insect resistant. 

Applications of silicon fertilizer to the soil increased rice 

absorption by 32% and decreased the ability of Diatraea 

saccharalis to bore into the crop (Sidhu et al.,2013). A 

higher silicon content deposition in the ectodermal layers 

of sugarcane's internodes increased the plant's opposition 

to Eldana saccharina(Keeping et al., 2009). Calcium 

silicate used by foliar spray greatly boosted white fly 

nymph mortality, preventing considerable output losses 

in crops including wheat, rice, cucumber, cotton, and 

sugarcane (Correa et al., 2005). 

Table 1: Drought-resistance mechanisms of common crops with citations. 

 

Stress Crop Mechanisms Reference 

Drought Sorghum the pace of respiration and other physiological processes will speed upe. Yin et al., 2014 

Drought Bluegras

s 

Plants' morpho-physiological processes and their water-relationships both 

speed up. 

Saud et al., 

2014 

 

Table 2: Salinity-Resistance Mechanisms of Common Crops with citations. 

 

Stress Crops Mechanisms Reference 

Salinity Okra Reduction of Sodium ions and Chlorine throughout roots and shoots Abbas et al., 2015 

Salinity Canola Lower levels of hydrogen peroxide and toxic ions. Abbas et al., 2015 

 

Table 3: Heavy Metal-Resistance Mechanisms of Common Crops with citations. 

 

Stress Crops Mechanisms Reference 

Cu Wheat A decrease in Cu translocation to the shoot. Keller et al., 2015 

Pb Cotton The production of enzymatic antioxidants increases. Bharwana et al., 2013 

 

Table 4: Disease-stress tolerance mechanisms in Common crops, with citations 

 

Disease Crops Mechanisms Reference 

Leaf Blast Rice Both -1, 3-glucanase and chitinase activities rise. Souza et al., 2015 

Powdery mildew Black gram The production of proteins involved in immunity 

improved. 

Parthasarathy and Jaiganesh, 

2016 

Anthracnose Tomato An increase in cuticle thickness. Somapala et al., 2016 

 

Table 5: Insect-pest stressTolerance mechanisms of Common cropswith citations. 

 

Insect-pest Crops Mechanisms References 

Stalk Borer Sugar Cane Length and percentage of stalk were cut down. Keeping et al., 2013 

Fall armyworm Rice Both larval survival and food selection are influenced 

by the adult's diet. 

Nascimento et al., 2014 

 

Conclusion: According to the studies that were looked 

at, only oxygen and silicon are found in the 

asthenosphere in terms of abundance. Silica produces a 

sustainable food production system by shielding plants 

from both biological and environmental hazards. The 

availability or application of silicon on a consistent basis 

promotes plant development and enhances yields. Many 

studies have shown that silicon has positive benefits on 

plants, but since these effects vary depending on plant 

genotype, environmental factors, and other factors, 

additional study is needed to fully understand how silicon 

affects plant response in stressful situations. 
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