
Pakistan Journal of Science (Vol. 63 No. 4 Dec, 2011)

194

A FORMAL SOFTWARE TESTING TECHNIQUE

M. M. Baig and A. A. Khan,

Corresponding author email: mbaig2000@gmail.com, dransark@yahoo.com

ABSTRACT: Software Testing is defined as a single phase activity in software development
process by using water fall model. We have been working on a research project on formal software
testing technique. In this paper, contrary to usual practice, a built-in testing module at each stage of
software development process is proposed. The problem description is first expressed in a formal
notation to get the problem-definition, in an unambiguous and formal format. This formal description
of the problem will be more accurate and will form a formal test bed in the tabular form. This test bed
will facilitate different types of relevant testing at each phase of system development process, both
vertical and horizontal testing. The said software testing technique consists of three modules. This
paper covers the work done in the first module.

Key words: Formal notation, Software Testing, Specification, Verification and Validation.

INTRODUCTION

Typical software testing costs vary based on the
criticality of the software development project from 40%
to 85% of the entire system development process as per
(Pushkar, 2004; Gaudel, 1988). To remedy this over
expenditure of money and time, it is proposed that a
formal method for testing be incorporated in the software
development methodology. One weak point in software
development process is that testing is undertaken as a
single step at the end of software development process as
described in (Kaner, et al., 2001; Ludwig, 2003;
Burnstein, 2003; Young, 2005; Last, 2004; Loveland,
etal., 2004) and the second problem is that organizations
pressurize to release the product before it is completely
tested. As described in (Tian, 2005; Pushkar, 2004;
Hoglund 2004) as special notes of considerations and
challenges that are particular to testing are: improve
testing process, define requirements formally, prove the
concept, champion product testability, design for
sustainability, and plan for deployment, face challenges
of success. In (Dalal, 2004) the testing issues defined are:
no formal methodology for system development, no
formal walkthroughs, no documentation, absence of
interactions between groups, no stress testing. The paper
also provides summary of testing problems and
emphasizes that “testing is so important that it should be
considered from project inception”.

MATERIALS AND METHODS

The proposed technique consists of three modules:
1- A Formal Notation to describe specifications;
2- A Formal Test bed (in a matrix form);
3- A set of algorithms and tools.

Formal Notation to Describe Specifications (FRS)
A software testing system is defined as a vector =

[boundary specifications, generic object type],
Where
Boundary specifications = [output attribute vector, input
attribute vector]
Outputs = [output attribute vector]
Inputs = [input attribute vector]
Generic object type:
Object name
[object type identifier]
[Domain{attributes}]
[{Sub domains{attribute}]
{Probability}]
[identified by{key attributes}]
[triggered by{output stimulus attributes}]
[function of{input attributes}]
[derivation is{computing expression}]
[members {attributes}]
[Synonym {synonym title}]
[comment {comments if necessary}]
End.
Above generic objects or structures are optional and may
be used as per requirement of the tester/developer
Where;
Object type identifier=
input/output/relation/domain/function/item
Identifier = Key attribute/(s) which uniquely identifies
one snap shot (or an occurrence) of generic object type.
Derivation expression = computation procedure of a
derivation function.
Output trigger = input attribute name/ET/if condition.
Option = qualified option/unqualified option.
Qualified option = option on “generic attribute name”.
Unqualified option = option either {attributes} Or
{attributes}

Pakistan Journal of Science (Vol. 63 No. 4 Dec, 2011)

195

Test Bed = is an environment that contains all details,
software, hardware needed to test a software component
or software system.

Example System: On the last working day of every
month, a pay slip is generated by MIS department which
is distributed to all employees. On first day of every
month salaries of all employees are credited in the bank
accounts of all employees. This pay slip provides all
details of the salary i.e. basic pay, allowances and
deductions. Net salary = gross salary - deductions, where
gross salary = basic pay salary + allowances. The
allowances are: house rent, conveyance, computer,
entertainment, medical, ad-hoc relief, senior post,
Chairman etc. The deductions are: income tax, BF, PF,
Group insurance, teacher society contribution and
advances taken.
The problem described in formal notation (module 1)
is as follows:
System title is: Employees monthly salary pay slip

Boundary Specification vectors
Output vector Monthly pay slip;
Input vector employee detail, income details,
deductions, Advances & loans;
Comment (every month a pay slip is generated
for each Employee.)
End.

Monthly Pay Slip
Output vector
Trigger ET;
Identifiers key (e #, name);
Attributes (employee#, name, designation,
grade, status, bank acc#, department)
Cardinality (0 . . . 1000);
Extension 1000;
Frequency I per month
End.

Employee details
Input vector
Attributes (employee#, name, designation,
grade, status of post, bank acc#, department.);
Cardinality (0 . . . 1000);
Extension 1000;
Frequency one per month;
Comment (new employee details type through
keyboard & updates done every month.)
End.

Income details
Input vector
Attributes (e#, basic pay, computer allowance,
conveyance allowance, medical allowance,
house rent)
Cardinality (0 . . . 1000);
Extension 1000;
Frequency one per month;
End.

Deductions
Input vector
Attributes (e#, income text, GF, GPF, GI, car

advance, house advance);
Cardinality (0 . . . 1000);
Extension 1000;
Frequency one per month;
End.

Advances & loans
Input vector
Attributes (car purchase, house purchase,
computer Purchase)
Cardinality (0 . . . 1000);
Extension 1000;
Frequency one per month;
End.

Employee number
Item
Domain integer (1…1000);
Status constant;
Comment (status stands for whether item is
constant Or requires derivative)

Employee name
Item
Domain string;
Status constant
End.

BPS number
Item
Domain integer(1…22);
Status constant;
End.

Basic pay
Item
Domain real(0…100000);
Status constant;
End.

Income tax
Item
Attributes gross pay, deductions, IT rates;

Domain real(0….50,000);
Identifiers e#;
Status derived
Filter option 1;
Trigger govt. notice;
Comment if item is derived than derivation is
described
End.

Option 1
Filter if income >=60,000 than select
End.

Derivation
If income > 60,000 and < 100000
IT rate = 10%;
Else if income > 100000 and < 200000,
Then IT rate 15%;
Else if income > 200000 and < 300000,
Then IT rate 20%;
Else in come > 300000
Then IT rate 25%;
End.

Pakistan Journal of Science (Vol. 63 No. 4 Dec, 2011)

196

Net salary
Item
Identifiers e#;
Domain real(0…00000);
Attributes gross pay, deductions, advances;
Status derived;
Filter option 2;
Trigger pay slip
Comment all regular employees are subject to
allowance, deduction etc. but contract
employees salary is fixed.
End.

Option 2
Filter if employee status = regular than select

Derivation
If employee = regular than net salary = gross
pay – (deduction + advances)
End.

RESULTS AND DISCUSSION

It is expected that after completion of the entire
three modules we will be able to provide enormous
assistance to software-tester. The technique will provide a
complete software testing technique which is expected to
be: accurate, patent, structured and unambiguous
technique to test software at each step of software
development process contrary to existing practice i.e.
testing at a single step only.

The FRS provides a flexible and unambiguous (easy
to use) capability to all kind of software developers.

Conclusions: This paper describes the development of a
Software research project consisting of three modules:
Formal notation for Requirement Specification (FRS); a
test bed; a set of testing tools. On the basis of the state of
art literature survey so far, and working on 1st module of
my research project and then applying FRS (i.e. 1st

module) on a small typical example system the robust
expressive quality of the FRS has been shown. It is
expected that after completion of the entire project we
will be able to provide great assistance to software tester
a complete software testing technique which will have:

precise, clear, structured and unambiguous capability of
describing the problem in FRS and then automatically
transforming the problem in FRS in a tabular form (Test
Bed) from where we will easily take up validation and
verification of the functions described in formal
specification.

Acknowledgment: The authors acknowledge all kind of
support by NED University of Engineering &
Technology and specially the Vice Chancellor as
chairman of Advanced Studies & Research Board.

REFERENCES

Burnstein, I., Practical Software Testing 1st Ed. Springer,
(2003).

Kaner, C., J. Bach and Pettichord, B., Lesson Learned in
Software Testing. Wiley, Ist Ed. (2001).

Dalal, G., Software Testing Fundamentals Methods and
Metrics. American Society for Quality. (2004).

Gaudel, C., Algebraic Specifications and Software
Testing: Theory and Application. University Paris
Sud. (1988).

Hoglund, G., Exploiting Software: How to break code.
McGraw. (2004).

Ludwig, E., Software Testing should reveal errors not
avoid them. Washington information source. (2003).

Last, M., Artificial Intelligence Methods in Software
Testing. World Scientific Publishing Company.
(2004).

Loveland, S., G. Miller, R. Prewitt Jr. and M. Shannon,
Software Testing Techniques finding the defects
that matter. Charles River Media. (2004).

Puskar, H., Effective Software Testing, 50 specific ways
to improve your Testing. American Society for
Quality, 6. (2004).

Tian, J., Software Quality Engineering. Wiley-inter Sc.
(2005).

Young, M., Software Testing and Analysis: Process,
Principles, & techniques. John Wiley & Sons.
(2005).

